
Serial Port Protocol

Hardware Product Development > IoTOS Pro-Code Development >

MCU Connection Solution > Wi-Fi Common Solution

Version: 20210412

Online Version

https://developer.tuya.com/en/iot/device-development/embedded-software-development/mcu-development-access/wifi-mcu-sdk-solution/tuya-cloud-universal-serial-port-access-protocol

Contents

Contents

1 Serial communication convention 2

2 Frame format description 3

3 Status data unit 6

4 Protocol details 8
4.1 Detecting heartbeat . 8
4.2 Querying product information . 9
4.3 Querying working mode . 13
4.4 Reporting device network status . 15
4.5 Resetting Wi-Fi . 17
4.6 Resetting Wi-Fi and select configuration mode 19
4.7 Sending command . 21
4.8 Reporting Status . 21
4.9 Querying Status . 23
4.10MCU upgrade service . 24
4.11Obtaining system time (GMT) . 29
4.12Obtaining local time . 31
4.13Wi-Fi functional test (scan the designated router) 33
4.14Obtaining module memory . 35
4.15Enabling the function of obtaining weather data (optional) 36
4.16Sending weather data (optional) . 38
4.17Reporting Status (synchronous) . 42
4.18Obtaining current Wi-Fi signal strength (optional) 43
4.19Notifying Wi-Fi module to disable the heartbeat (optional) 45
4.20Interface for serial port network configuration (optional) 46
4.21Obtaining current Wi-Fi connection status 48
4.22Map data service of robot vacuum (optional) 50
4.23Wi-Fi functional test (connected to the designated router) 54
4.24Obtaining module MAC . 56
4.25IR status notification (optional) . 57
4.26Production test of IR receiving and sending (optional) 60

i

Contents

4.27Map streaming data transmission (optional) 62
4.28Downloading service of other files (optional) 64
4.29Voice module protocol (optional) . 68
4.30Extended service of the module . 78
4.31Bluetooth function (optional) . 86

5 Version history 89

ii

Contents

Tuya Wi-Fi general serial port protocol is a customized protocol for Wi-Fi modules of
Tuya. It is mainly used for serial port communication between Tuya Wi-Fi modules
and other MCU serial ports. The architecture diagram is shown as follows.

{width=100%}

1 / 96

1 SERIAL COMMUNICATION CONVENTION

1 Serial communication convention

Baud: 9600/115200

Data bit: 8

Parity check: none

Stop bit: 1

Data flow control: none

MCU: the control chip of the control board. It connects to the Tuya module through
the serial port.

2 / 96

2 FRAME FORMAT DESCRIPTION

2 Frame format description

Field Length (byte) Description

Header 2 It is fixed as 0x55aa

Version 1 It is used for upgrade
and extension

Command 1 Specific frame type

Data length 2 Big-endian

Data N Entity data

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Description:

• All data greater than one byte shall be transmitted with big-endian format.

• Generally, one command word is sent by one party and received by the other
party in a synchronous way. That is, one party sends the command, and the
other party responds. If the sender does not receive the correct response
packet within the stipulated time, the transmission times out, as shown in the
following figure:

3 / 96

2 FRAME FORMAT DESCRIPTION

{width=100%}

Note: for specific communication mode, see the section of Protocol details.

• Sending module control command and reporting MCU status works in an asyn-
chronous way. Assuming that the command of module control is “x”, and the
command of MCU status report is “y”, the data transmission is as follows:

– Send module control command:

4 / 96

2 FRAME FORMAT DESCRIPTION

{width=100%}

• Report MCU status:

{width=100%}

5 / 96

3 STATUS DATA UNIT

3 Status data unit

Data point command and status data unit are shown as follows:

Data segment Length (byte) Description

dpid 1 Data point serial
number.

type 1 Specific data type of a
data point in the IoT
Console. For more
information, see the
description of the type
field.

len 2 Number of bytes of the
value. For more
information, see the
description of the type
field.

value 1/2/4/N Expressed in the
hexadecimal system,
and adopt big-endian
transmission when there
is more than one byte.

Description of the type field:

type Type Length (byte) Description

0x00 raw N Represents raw
data point
(module
pass-through).

0x01 bool 1 Value range:
0x00/0x01.

6 / 96

3 STATUS DATA UNIT

type Type Length (byte) Description

0x02 value 4 Represents
integer type,
expressed with
big-endian.

0x03 string N Represents
specific string.

0x04 enum 1 Represents
enumeration
type, ranging
from 0 to 255.

0x05 bitmap 1/2/4 Expressed with
big-endian when
there is more
than one byte.

• For data point command and status data unit, except raw type, all other types
belong to the object data point.

• Status data can contain command data units of multiple data points.

7 / 96

4 PROTOCOL DETAILS

4 Protocol details

4.1 Detecting heartbeat

Description:

• After the Wi-Fi module is powered on, it sends heartbeats periodically at an
interval of 15 seconds. If the module does not receive a response from the
MCU within three seconds, the MCU is considered offline.

• The MCU can also periodically check whether the module is working normally
based on the heartbeat. If the module does not send a heartbeat, the MCU can
reset the Wi-Fi module through the module hardware reset pin.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x00

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 00 00 00 ff

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

8 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Version 1 0x03

Command 1 0x00

Data length 2 0x0001

Data 1 0x00: the return value
of the first heartbeat
after the MCU reboots. It
is only sent once, used
for the module to
determine whether the
MCU reboots during the
working process.

0x01: this value is
returned except for the
first return value of 0
after the MCU reboots.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 00 00 01 00 03 (the first return value of the MCU)

55 aa 03 00 00 01 01 04 (the normal return value except for the first return)

4.2 Querying product information

Description:

• Product ID (PID) is generated in the Tuya IoT console to record product informa-
tion in the cloud.

• Product information consists of the product ID and MCU software version num-
ber.

9 / 96

4 PROTOCOL DETAILS

• MCU software version number is defined as dot-decimal notation in the format
of x.x.x (0\<=x\<=99), and x is a decimal digit.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x01

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 01 00 00 00

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x01

Data length 2 N

Data N {“p”:”AIp08kLIftb8x***”,“v”:”1.0.0”,”m”:1,”mt”:10,”n”:0,”ir”:”5.12”,”low”:0}

10 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, {“p”:”AIp08kLIftb8x***”,“v”:”1.0.0”,”m”:1,”mt”:10,”n”:0,”ir
”:”5.12”,”low”:0}

Product information field description:

• p indicates that the product ID is AIp08kLIftb8x***, which is the product ID cre-
ated by the user in Tuya IoT Console.

• v indicates that the MCU version is 1.0.0, and the format of the MCU version
number is defined in the format of x.x.x.

• m indicates the working mode of the module. 0 represents the normal network
configuration mode. 1 represents a time-out network configuration mode. 2
represents unexpected-trigger-proof mode.

– Normal network configuration mode: The module is ready for network con-
figuration after it is powered on for the first time.

– Time-out network configuration mode: The module is not ready for net-
work configuration after it is powered on for the first time. When the MCU
sends a reset command, the module enters network configuration mode
accordingly. If the device is not configured within three minutes, the mod-
ule will enter the non-network configuration mode again until it receives
another reset command.

– Unexpected-trigger-proof mode: After the module is configured and locally
reset by the MCU reset command, the device is ready for network config-
uration. If the device is not configured within three minutes, it will restore
the network connection before reset. If the device is powered off unex-
pectedly after the local reset, it will restore the network connection before
reset. In this mode, after the device is removed from the app, it will not
record the last network connection and reconnect to that network. This
mode suits the scene of avoiding unexpected local network reset.

11 / 96

4 PROTOCOL DETAILS

• mt field (optional): set the status switching time between the safe mode and
the unexpected-trigger-proof mode. If this field is not uploaded, the switching
time is three minutes. The switching time can be set from 3 to 10 minutes.

• n field (optional): indicates the network configuration mode. If this field is not
uploaded, you can switch between two network configuration modes.

– 0: indicates SmartConfig coexists with access point (AP) configuration. The
module supports both AP configuration and EZ configuration. You do not
need to switch them manually. For the corresponding network configura-
tion status packet, see reporting device network status.

– 1: indicates there is only AP configuration. In this mode, the network can
only be configured through an AP connection.

• ir field (optional): enable the infrared (IR) function of the module to inform the
module of I/O interfaces used by IR I/O pins. Without this field, the IR function
is disabled by default. 5.12: indicates that the IR output pin is I/O 5, and the
IR input pin is I/O 12.

Note: if the self-processing mode of the module is used, the button and
Wi-Fi indicator I/O interfaces cannot be used for IR I/O pins. For the cross-
module I/O setting, you need to add 32 to the I/O pin number of the set
module. For example, the number of PB20 is 20+32, which is 52. The IR
output pin uses PWM resources. IR input pin requires the I/O interrupt. For
the supported I/O interface, see the correspondingmodule documentation.

• low field (optional): indicates whether the module enables low power mode that
maintains long-running connections. Without this field, the low power mode
is disabled by default. If the product keeps a connection to the router without
network access control, you can use this field to keep the average consumption
of the module lower than 15 mA. When the dual-mode module enables this
function, it only has Bluetooth network configuration function. The Bluetooth
control function is disabled. For products that do not have requirements for
power consumption, this field is not necessary.

– 0: disable low power mode.
– 1: enable low power mode.

12 / 96

4 PROTOCOL DETAILS

4.3 Querying working mode

The MCU settings determine the method of triggering and indicating network con-
figuration. The working mode of the module mainly includes how to indicate Wi-Fi
working status and how to reset the Wi-Fi network. There are two cases:

• The coordinated processing mode of the MCU and module: The MCU detects
the trigger signal of network configuration. When receiving the serial port com-
mand, theWi-Fi module resets network configuration. Themodule informsMCU
of the current Wi-Fi working status. The MCU supports the status display. It is
recommended to select this mode for home appliances.

• The self-processing mode of the module: The working status of the Wi-Fi mod-
ule is displayed through the Wi-Fi GPIO pin to drive the LED indicator. The Wi-Fi
module resets the network configuration by detecting the GPIO input pin. Re-
set Wi-Fi in self-processing mode: Wi-Fi detects the low electrical level of GPIO
input pin for more than 5 seconds to trigger Wi-Fi reset. The GPIO pins used by
the indicators and buttons are configured by the following commands.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x02

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 02 00 00 01

MCU returns:

13 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x02

Data length 2 0x0000: indicates that
the module works in
coordination with the
MCU, and the MCU
needs to implement the
functions mentioned in
the above explanation.

0x0002: indicates that
the module works in
self-processing mode.

Data 0/2 The data length is 2: the
first byte is the GPIO
number of the Wi-Fi
status indicator. The
second byte is the GPIO
number of the Wi-Fi
reset button.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example:

The coordinated processing of the MCU and module.

55 aa 03 02 00 00 04

In module self-processing mode, indicator 0x0c represents GPIO12, and reset button
0x0d represents GPIO13.

14 / 96

4 PROTOCOL DETAILS

55 aa 03 02 00 02 0c 0d 1f

4.4 Reporting device network status

Device network status Description Status value

Status 1 SmartConfig
configuration status.

0x00

Status 2 AP configuration status. 0x01

Status 3 Wi-Fi has been
configured but not
connected to the router.

0x02

Status 4 Wi-Fi has been
configured and
connected to the router.

0x03

Status 5 Wi-Fi has been
connected to the router
and the cloud.

0x04

Status 6 Wi-Fi device is in the low
power mode.

0x05

Status 7 Wi-Fi device is in
SmartConfig and AP
configuration mode.

0x06

Description:

• Device network status:

– SmartConfig configuration status.
– AP configuration status.
– Wi-Fi has been successfully configured but not connected to the router.
– Wi-Fi has been successfully configured and connected to the router.
– The device has been connected to the router and the cloud.

• The status of an LED indicator in module self-processing mode:

15 / 96

4 PROTOCOL DETAILS

– Status 1: flicker at 250 milliseconds intervals.
– Status 2: flicker at 1,500 milliseconds intervals.
– Status 3 or 6: always off.
– Status 4 or 5: always on.

• When the module detects that the MCU reboots or is disconnected and then
go back online, it will send the Wi-Fi status to the MCU.

• When the Wi-Fi status of the module changes, it will send the Wi-Fi status to
the MCU.

• If the module working mode is set to module self-processing, the MCU does not
need to implement this protocol.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x03

Data length 2 0x0001

Data 1 Indicates Wi-Fi working
status:

0x00: status 1

0x01: status 2

0x02: status 3

0x03: status 4

0x04: status 5

0x05: status 6

0x06: status 7

16 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 03 00 01 00 03

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x03

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 03 00 00 05

4.5 Resetting Wi-Fi

Description:

• Status transfer of resetting Wi-Fi is shown as follows:

17 / 96

4 PROTOCOL DETAILS

{width=100%}

Note: When sending the reset command, please send it after the module ini-
tialization is completed. Otherwise, it may be invalid. For more information,
see Wi-Fi Module Initialization Flow.

• If the working mode of the module is set to module self-processing, the MCU
does not need to implement this protocol.

Reset Wi-Fi in self-processing mode: Wi-Fi detects the low electrical level of GPIO
input pin for more than 5 seconds to trigger Wi-Fi reset.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x04

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 04 00 00 06

18 / 96

https://developer.tuya.com/en/docs/iot/device-development/embedded-software-development/mcu-development-access/wifi-mcu-sdk-solution/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization

4 PROTOCOL DETAILS

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x04

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 04 00 00 03

4.6 Resetting Wi-Fi and select configuration mode

Description:

• Compared to resetting Wi-Fi, with this frame, MCU can select the required con-
figuration mode after the Wi-Fi is reset.

• You can implement this protocol selectively.

• If the module working mode is set to module self-processing, the MCU does not
need to implement this protocol.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x05

19 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Data length 2 0x0001

Data 1 0x00: enter SmartConfig
configuration mode

0x01: enter AP
configuration mode

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, enter SmartConfig configuration mode

55 aa 03 05 00 01 00 08

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x05

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 05 00 00 04

20 / 96

4 PROTOCOL DETAILS

4.7 Sending command

Description:

• Command sending can contain status data units of multiple data points.

• Command sending is an asynchronous processing protocol, corresponding to
the data point status report of the MCU.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x06

Data length 2 It depends on the type
and number of the
status data unit

Data N See the section of status
data unit

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, the system switch corresponds to DP 3, uses the Boolean data type,
and the value of 1 indicates power-on.

55 aa 00 06 00 05 03 01 00 01 01 10

4.8 Reporting Status

Description:

• For the description of the status data unit of a data point, see the section of
the status data unit.

21 / 96

4 PROTOCOL DETAILS

• The status report is an asynchronous processing protocol. Its trigger mecha-
nism has three types:

– After receiving the processing frame of command sending, the MCU exe-
cutes the command of the corresponding data point, and then sends the
changed status to the module through the status report frame.

– MCU actively detects that the data point has changed and sends the
changed status to the module.

– After the MCU receives a status query frame, it sends the status of all data
points to the module.

• Status report can contain status data units of multiple data points.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x07

Data length 2 It depends on the type
and number of the
status data unit

Data N See the section of status
data unit

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, humidity corresponds to DP 5, uses a valve variable, and the humidity
is 30°C.

55 aa 03 07 00 08 05 02 00 04 00 00 00 1e 3a

Examples of reporting multiple status data units:

DP 109 is a Boolean variable, and the value is 1.

22 / 96

4 PROTOCOL DETAILS

The DP 102 is a string variable, and the value is an ASCII code of 201804121507.

55 aa 03 07 00 15 6d 01 00 01 01 66 03 00 0c 32 30 31 38 30 34 31 32 31 35 30 37 62

4.9 Querying Status

Description:

• Status query is an asynchronous processing command that is mainly used by
the module to query the status of all object data points of MCU. When MCU
receives this frame, it reports the status of data points through the status report
frame.

• Status query is sent at two time points:

– The module is powered on for the first time, after connecting to the MCU
through the heartbeat, it sends the query.

– When the module detects that the MCU reboots or is disconnected and
then go back online, it sends the query.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x08

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 08 00 00 07

23 / 96

4 PROTOCOL DETAILS

4.10 MCU upgrade service

Description:

• The upgrade time is triggered by related upgrade options that you configure in
Tuya IoT Console. The module only serves as a data transmission channel that
supports MCU upgrades and does not perform any data analysis.

• Currently, the Tuya IoT platform provides the following four MCU upgrade con-
figurations.

– App notification upgrade: you choose to upgrade or not when the app
receives an upgrade prompt.

– App hardware silent upgrade: there is no upgrade prompt on the app. The
module detects upgrade automatically within one minute after the module
is powered on and automatically pulls the upgrade package if the latest
upgrade package is found. After the first power-on, the module detects
whether there is an upgrade package configuration in the cloud every 24
hours.

– Forced upgrade: there is an upgrade prompt on the app. You are required
to upgrade the device before you can continue to use it.

– Manual detection upgrade: there is no upgrade prompt on the app. You
must click the relevant firmware version to detect on the app. If there is
the latest firmware configuration, an upgrade prompt will appear.

• MCU upgrade flowchart: after the Wi-Fi module has sent all upgrade packages,
it resends the command 01 (see the section of query product information).
The MCU needs to reply with the upgraded MCU software version number in the
product information within oneminute. The version numbermust be consistent
with that configured in the IoT Console.

24 / 96

4 PROTOCOL DETAILS

{width=100%}

Initiating upgrade (notification of upgrade package size)

Upgrade methods include automatic and manual upgrades. For an automatic up-
grade, when the module detects the latest MCU firmware in the cloud, it will au-
tomatically initiate the interaction with the MCU upgrade package. For a manual
upgrade, only when you confirm the upgrade on the app, can the module initiate
the interaction with the MCU upgrade package.

The module sends:

25 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0a

Data length 2 0x0004

Data 4 The size of the firmware
file is in byte
measurement, the data
type is unsigned integer,
and the data storage is
in big-endian format

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 00 0a 00 04 00 00 68 00 75

It indicates that the length of the firmware package is 26,624, which is 26 KB.

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0a

Data length 2 0x0001

Data 1 Packet size of the
upgrade package:

26 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

0x00: 256 byte by
default (compatible with
old firmware)

0x01: 512 byte

0x02: 1,024 byte

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 0a 00 01 00 0d

Transmitting upgrade package

Description:

• The data format of upgrade package transmission: packet offset + packet data.

• If the MCU receives the frame with data length equal to 4 bytes and the up-
grade packet offset is equal to or greater than the size of firmware, the packet
transmission ends.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0b

Data length 2 The data length is the
sum of 0X0004 and the
data packet length

27 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Data N The first four bytes are
fixed as packet offset,
and the latter bytes are
the packet content

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example:

If the file to be upgraded has 530 bytes in size, under this circumstance, the MCU
can skip the response to the last data packet.

• For the first packet data, the packet offset is 0x00000000, and the data packet
length is 256. 55 aa 00 0b 01 04 00000000 xx…xx XX

• For the second packet data, packet offset is 0x00000100, and data packet
length is 256. 55 aa 00 0b 01 04 00000100 xx…xx XX

• For the second to last packet data, packet offset is 0x00000200, and the data
packet length is 18. 55 aa 00 0b 00 16 00000200 xx…xx XX

• For the last packet data, packet offset is 0x00000212, and data packet length
is 0. 55 aa 00 0b 00 04 00000212 xx...xx XX

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0b

Data length 2 0x0000

Data 0 None

28 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 0b 00 00 0d

4.11 Obtaining system time (GMT)

Description:

• As a standard time, Greenwich Mean Time (GMT) is independent of time zone
and daylight saving time.

• When the module is connected to the network, after the previous local times-
tamp is calibrated, the module returns success and valid time data.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0c

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

29 / 96

4 PROTOCOL DETAILS

For example, 55 aa 03 0c 00 00 0e

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0c

Data length 2 0x0007

Data 7 Data length is 7 bytes:

Data[0] indicates
whether the time is
obtained successfully. 0
represents failure, and 1
represents success.

Data[1] is the year, and
0x00 represents the
year of 2000.

Data[2] is the month,
ranging from 1 to 12.

Data[3] is the day,
ranging from 1 to 31.

Data[4] is the hour,
ranging from 0 to 23.

Data[5] is the minute,
ranging from 0 to 59.

Data[6] is the second,
ranging from 0 to 59.

30 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, at 05:06:07 on April 19, 2016 (GMT).

55 aa 00 0c 00 07 01 10 04 13 05 06 07 4c

4.12 Obtaining local time

Description:

• GMT plus local (device activation location) time zone and daylight saving time
is the local time.

• When the module is connected to the network, after the previous local times-
tamp is calibrated, the module returns success and valid time data.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x1c

Data length 2 0x0000

Data xxxx None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

31 / 96

4 PROTOCOL DETAILS

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x1c

Data length 2 0x0008

Data Data Data length is 8 bytes:

Data[0] indicates
whether the time is
obtained successfully. 0
represents failure, and 1
represents success.

Data[1] is the year, and
0x00 represents the
year of 2000.

Data[2] is the month,
ranging from 1 to 12.

Data[3] is the day,
ranging from 1 to 31.

Data[4] is the hour,
ranging from 0 to 23.

Data[5] is the minute,
ranging from 0 to 59.

Data[6] is the second,
ranging from 0 to 59.

Data[7] is the week,
ranging from 1 to 7, and
1 represents Monday.

32 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

• For example, if the device is activated in mainland China, the local time is
Beijing time (GMT+08:00). For example, at 05:06:07 on April 19, 2016 (GMT).
55 aa 00 1c 00 08 01 10 04 13 05 06 07 02 5f

• If the device is activated in other countries or regions, the local time is the time
zone in which the device is located.

4.13 Wi-Fi functional test (scan the designated router)

Description:

• The module scans the SSID of tuya_mdev_test and returns results and signal
strength percentage.

• In order to prevent defective products to the greatest extent, it is recom-
mended that the distance between the router and the device should be about
5 meters. The test result is qualified if the signal strength is greater than or
equal to 60%. It can be adjusted based on the actual production line and
factory environment.

Note: To send the test command, please send it after the module initial-
ization is completed. Otherwise it may be invalid. For more information,
see Wi-Fi Module Initialization Flow.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

33 / 96

https://developer.tuya.com/en/docs/iot/device-development/embedded-software-development/mcu-development-access/wifi-mcu-sdk-solution/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization

4 PROTOCOL DETAILS

Field Length (byte) Description

Command 1 0x0e

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0e

Data length 2 0x0002

Data 2 Data length has 2 bytes.

Data[0]: 0x00 indicates
failure, and 0x01
indicates success.

When Data[0] is 0x01,
which indicates success,
Data[1] is signal
strength (from 0 to100,
0 represents the
weakest signal, and 100
represents the strongest
signal).

34 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

When Data[0] is 0x00,
which indicates failure, if
Data[1] is 0x00, the
specified SSID is not
found; if Data[1] is 0x01,
an authorization key is
not burned to the
module.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.14 Obtaining module memory

Description:

Obtain the remaining memory of the Wi-Fi module.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0f

Data length 2 0x0000

Data Data None

35 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0f

Data length 2 0x0004

Data 4 The data length is 4
bytes in big-endian
format.

For example, 0x00 0x00
0x28 0x00 represents
the remaining memory
is 10,240 bytes.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.15 Enabling the function of obtaining weather data (optional)

Description:

Enable the function of obtaining weather data.

36 / 96

4 PROTOCOL DETAILS

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x20

Data length 2 N((L+K)+(L+K)…)

Data Data L: occupies 1 byte,
indicating the length of
K.

K: represents the
request parameter
name.

For example:

L: 0x06 K: w.temp

L: 0x06 K: w.pm25

L: 0x0a K: w.humidity

L: 0x0b K: w.condition

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

37 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Command 1 0x20

Data length 2 0x0002

Data 2 Data[0]:

0x00 indicates failure.

0x01 indicates success.

Data[1]:

0x00 indicates no error.

0x01 is error code,
indicating invalid data
format.

0x02 is error code,
indicating exception.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.16 Sending weather data (optional)

Description:

The module will send the weather data regularly after the weather data function is
enabled. It will send the data immediately once the function is enabled, and later it
sends at 30-minute intervals.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

38 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Version 1 0x00

Command 1 0x21

Data length 2 N((LKTLV)+(LKTLV)+…)

Data Data 0x00: indicates failure

0x01: is an error code,
indicating the parameter
service is not authorized
(check if you have
purchased this
parameter service or
not)

0x01: indicates success

L: indicates parameter
name length

K: indicates parameter
name

T: 0x00 indicates integer
type, and 0x01 indicates
string type

L: indicates field name
length

V: indicates field value

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

MCU returns:

39 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x21

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Remark:

• For example, when the request parameter is w.temp,w.pm25, w.temp is re-
turned. If the return parameter is less than the request parameter, check
whether the request parameter name is correct.

• For the field value of w.condition, see Weather UTF-8 Code Reference Table or
the following Weather UTF-8 Code Table for w.condition.

For example: w.humidity: 69, w.temp: 32, w.pm25: 10, w.condition: cloudy. The UTF-8
code is E5A49AE4BA91. 55 AA 00 21 00 40 01 0A 77 2E 68 75 6D 69 64 69 74 79 00 04
00 00 00 45 06 77 2E 74 65 6D 70 00 04 00 00 00 20 06 77 2E 70 6D 32 35 00 04 00 00 00
10 0B 77 2E 63 6F 6E 64 69 74 69 6F 6E 01 06 E5 A4 9A E4 BA 91 1E

• The weather UTF-8 code table of w.condition is as follows:

Text Hexadecimal Text Hexadecimal

Sunny E699B4 Heavy rain E5A4A7 E99BA8

Thunderstorm E99BB7 E69AB4 Sandstorm E6B299 E5B098
E69AB4

Light snow E5B08F E99BAA Snow E99BAA

40 / 96

4 PROTOCOL DETAILS

Text Hexadecimal Text Hexadecimal

Freezing fog E586BB E99BBE Rainstorm E69AB4 E99BA8

Isolated showers E5B180 E983A8
E998B5 E99BA8

Dust E6B5AE E5B098

Thunder and
lightning

E99BB7 E794B5 Light showers E5B08F E998B5
E99BA8

Rain E99BA8 Sleet E99BA8 E5A4B9
E99BAA

Dust devil E5B098 E58DB7
E9A38E

Ice pellet E586B0 E7B292

Strong sandstorm E5BCBA E6B299
E5B098 E69AB4

Sand blowing E689AC E6B299

Light to moderate
rain

E5B08F E588B0
E4B8AD E99BA8

Mostly clear E5A4A7 E983A8
E699B4 E69C97

Fog E99BBE Showers E998B5 E99BA8

Heavy showers E5BCBA E998B5
E99BA8

Heavy snow E5A4A7 E99BAA

Extraordinary
rainstorm

E789B9 E5A4A7
E69AB4 E99BA8

Blizzard E69AB4 E99BAA

Hail E586B0 E99BB9 Light to moderate
snow

E5B08F E588B0
E4B8AD E99BAA

Partly cloudy E5B091 E4BA91 Light snow
shower

E5B08F E998B5
E99BAA

Moderate snow E4B8AD E99BAA Overcast E998B4

Needle ice E586B0 E99288 Downpour E5A4A7 E69AB4
E99BA8

Thundershower
and hail

E99BB7 E998B5
E99BA8 E4BCB4
E69C89 E586B0
E99BB9

Freezing rain E586BB E99BA8

41 / 96

4 PROTOCOL DETAILS

Text Hexadecimal Text Hexadecimal

Snow showers E998B5 E99BAA Light rain E5B08F E99BA8

Haze E99CBE Moderate rain E4B8AD E99BA8

Cloudy E5A49A E4BA91 Thundershower E99BB7 E998B5
E99BA8

Moderate to
heavy rain

E4B8AD E588B0
E5A4A7 E99BA8

Heavy to
rainstorm

E5A4A7 E588B0
E69AB4 E99BA8

4.17 Reporting Status (synchronous)

Description:

• It is a synchronous command. After the MCU data status is reported, you need
to wait for the module to return the result.

• The module responds to each report. A repeated report is not allowed before
the Wi-Fi module responds.

• When the poor network quality causes a failed data report, the module will
return failure after five minutes. The MCU needs to wait for more than five
seconds.

• For the description of the status data unit of the data point, see the section of
the status data unit.

• Status report can contain command data units of multiple data points.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x22

Data length 2 It depends on the type
and number of the
status data unit

42 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Data N See the section of status
data unit

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x23

Data length 2 0x0001

Data Data 0x00: indicates failure

0x01: indicates success

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.18 Obtaining current Wi-Fi signal strength (optional)

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

43 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Version 1 0x03

Command 1 0x24

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x24

Data length 2 0x0001

Data Data 0x00: indicates failure.

Less than 0: indicates
signal strength, such as
-60db.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

44 / 96

4 PROTOCOL DETAILS

4.19 Notifying Wi-Fi module to disable the heartbeat (optional)

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x25

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x25

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

45 / 96

4 PROTOCOL DETAILS

Note: for MCU modules that require hibernation to reduce power consumption,
before entering hibernation status, this command is sent to disable the heart-
beat of the Wi-Fi module. This command must not be sent when the device is
just powered on. The Wi-Fi module needs to establish a heartbeat connection
with the MCU after powered on.

4.20 Interface for serial port network configuration (optional)

Description:

• You can use the Tuya app or the app developed based on Tuya app SDK to obtain
the network configuration parameters. Themodule can receive the parameters
through the serial port and then complete network configuration through serial
port communication.

• When the module is ready for network configuration, the network configuration
can be implemented through the serial port.

• The module returns the response of successfully receiving network configura-
tion information of the serial port. With this information, the module will be
connected to the router and then activated in the cloud.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2A

Data length 2 xx

Data Data {“s”:”xxx”,”p”:”yyy
”,”t”:”zzz”}

s: ssid

p: password

t: a token that is
generated by the app

46 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2A

Data length 2 0x0001

Data x 0x00: indicates the data
is successfully received

0x01: indicates the
module is not ready for
network configuration

0x02: indicates JSON
data is invalid

0x03: indicates other
errors

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

47 / 96

4 PROTOCOL DETAILS

4.21 Obtaining current Wi-Fi connection status

Device network status Description Status value

Status 1 SmartConfig
configuration status.

0x00

Status 2 AP configuration status. 0x01

Status 3 Wi-Fi has been
configured but not
connected to the router.

0x02

Status 4 Wi-Fi has been
configured and
connected to the router.

0x03

Status 5 Wi-Fi has been
connected to the router
and the cloud.

0x04

Status 6 Wi-Fi device is in the low
power mode.

0x05

Status 7 Wi-Fi device is in
SmartConfig and AP
configuration mode.

0x06

Note: follows the description in the section of reporting device network status.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2B

Data length 2 0x0000

Data Data None

48 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2B

Data length 2 0x0001

Data 1 0x00: indicates
SmartConfig
configuration status

0x01: indicates AP
configuration status

0x02: indicates Wi-Fi is
configured but not
connected to the router

0x03: indicates Wi-Fi is
configured and
connected to the router

0x04: indicates the
device is connected to
the router and the cloud

0x05: indicates Wi-Fi
device is in low power
mode

49 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

0x06: indicates Wi-Fi
device is in SmartConfig
and AP configuration
status

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.22 Map data service of robot vacuum (optional)

Description:

• Robot vacuum streaming service commands are not supported by all modules.
To use this service, the device must adopt the specific module and activate
related service.

• This service currently works to transmit robot vacuum map data, acting as an
online channel of communication between the robot vacuum and map data on
the Tuya app.

• The data of a complete map generated by the robot vacuum is classified by
the map ID. The data under one map ID is considered to belong to the same
map by the app and will be accumulated.

• The robot vacuum moves around the entire house during cleaning. Poor Wi-Fi
signal in some areas may cause data upload failure. If the module memory is
sufficient, it can currently cache 24 pieces of data.

50 / 96

4 PROTOCOL DETAILS

{width=100%}

51 / 96

4 PROTOCOL DETAILS

Map streaming data transmission

Description:

• The offset represents the total length of data that the MCU has sent for one
map.

• Currently, the maximum data that can be buffered by the serial port of the
module can reach 1,024 bytes. The data in one map packet cannot exceed
1,024 bytes. The data content of one map packet is recommended to be 512
bytes.

• The map ID is an identifier of the data of a complete map. It will be changed
after the cleaning is completed, that is, after the data of a map is complete and
before new cleaning starts. Generally, the map ID is created in an incremental
manner. When the map ID changes, the current map data is displayed on the
app. The previous data will be cleared from the app interface.

• When data transmission starts, the module will stop sending heartbeat packets
to ensure priority transmission of the map data. If the module is not powered
off later, the heartbeat will not be initiated.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x28

Data length 2 0x0006+N

Data 2 Map ID: used as the
identifier of the data of
one map

4 Offset (the first packet is
0)

N Entity data (in
big-endian format)

52 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x28

Data length 2 0x0001

Data Data 0x00: indicates success

0x01: indicates the
streaming service
function is disabled

0x02: indicates that it
fails to connect to
streaming server

0x03: indicates data
push times out

0x04: indicates the
length of the
transmitted data is error

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

53 / 96

4 PROTOCOL DETAILS

4.23 Wi-Fi functional test (connected to the designated router)

Description:

• MCU sends router information to the module, and the module returns data
successfully. Then, the module uses relevant information to connect the router.

• MCU checks whether the router is connected according to the received packet.
Status 4 indicates Wi-Fi has been configured and connected to the router. If
MCU fails to receive a reply or status packet of a successful connection to the
router for more than 15 seconds, the production test is regarded to be a failure.

• When the production test is successful, if you start the production test again,
the test command can be resent. If the packet of successful connection to the
router is not received, it indicates the module is being tested. You need to reset
the module or power the module on again to send the test command.

• The module can complete a connection test when the network is not config-
ured.

• Before the production test of connecting to the router, the heartbeat packet
and product query packet must be replied, and the module has completed
initialization.

• Router name string supports maximum of 32 bytes, and the router password
string supports maximum of 64 bytes.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2C

Data length 2 xxxx

Data Data {“ssid”:”xxx”,”
password”:”xxxxxxxx”}

ssid: router name

password: router
password

54 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2C

Data length 2 0x0001

Data 1 Data length is 1 byte.

Data[0]:

0x00: indicates router
information is fails to be
received. Check
whether the sent router
JSON data packet is
intact.

0x01: indicates the
router information is
received successfully
(for the result, see
network status packet
description in the
section of reporting
device network status.

55 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.24 Obtaining module MAC

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2d

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2d

56 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Data length 2 0x0007

Data Data Data[0]: indicates
whether the MAC
address is obtained
successfully.

0x00 indicates success,
the last 6 bytes of the
MAC address is valid.

0x01 indicates failure,
the last 6 bytes of the
MAC address is invalid.

Data[1]–Data[6]:
indicates the valid MAC
address when Data[0] is
success.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.25 IR status notification (optional)

Device IR status Description Status value

Status 1 Send IR code 0x00

Status 2 The sending of IR code
ends

0x01

Status 3 IR learning begins 0x02

57 / 96

4 PROTOCOL DETAILS

Device IR status Description Status value

Status 4 IR learning ends 0x03

Description:

• The IR function can be configured in Tuya IoT Console, or the project manager
activates it and sends the sample to you.

• The time period of IR code transmission is very short and requires real-time per-
formance. The serial port data here are sent directly without re-transmission.

• You can set the status display as needed.

• Two I/O pins of the module are used to send and receive IR codes. If your device
is in self-processingmode of themodule, the I/O interface for IR function cannot
be set for other I/O pins.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2e

Data length 2 0x0001

Data Data Indicates IR working
status:

0x00: status 1

0x01: status 2

0x02: status 3

0x03: status 4

58 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2e

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

59 / 96

4 PROTOCOL DETAILS

4.26 Production test of IR receiving and sending (optional)

{width=100%}

Description:

• IR production test function is available when the network is not configured.

• After entering IR production test status, the module enters IR learning status.

• Once the module enters IR production test mode, the module remains in the
production test status, learns continuously, and sends the learned data. The
module exits the production test after the network is configured, or the module
is powered off.

MCU sends:

60 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2f

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2f

Data length 2 0x0001

Data Data 0x00 indicates that it
entered the production
test of IR receiving and
sending successfully.

0x01 indicates that it
fails to enter the
production test of IR
receiving and sending.

61 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.27 Map streaming data transmission (optional)

Description:

• Robot vacuum streaming service commands are not supported by all modules.
To use this service, the device must adopt the specific module and activate
related service.

• This service currently works to transmit robot vacuum map data, acting as an
online channel of communication between the robot vacuum and map data on
the Tuya app.

• A robot vacuummap is composed of multiple maps with different types of data.
This type of robot vacuum can use this channel.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x30

Data length 2 0x0009+N

Data 1 Map service protocol
version: 0x00.

2 Map service session ID:
a mark of a map display.

62 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

6 BUF[0] sub-map ID (one
map session can be
synthesized from
multiple map data, such
as a path map).

BUF[1] indicates the
processing method of
map ID data. 0x00:
accumulates data 0x01:
clear the data uploaded
by the sub-map ID.

BUF[2]–BUF[5] indicates
sub-map data offset (the
first packet is 0).

N Entity data (in
big-endian format)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x30

Data length 2 0x0001

Data Data 0x00: indicates success

63 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

0x01: indicates failure

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.28 Downloading service of other files (optional)

Description:

• This channel is used to download application files other than MCU firmware.
The files must be uploaded to the Tuya product management background, and
they are used based on the app version.

• The firmware only serves as a data transmission channel and does not process
the download files. You need to check the integrity of relevant files.

• DP data can be sent and reported normally while the file is being downloaded.
It is not recommended to perform high-volume data communication during the
file download, so as not to affect the efficiency of data download.

Initiating download (notification of file package size)

Description:

Before starting file download, the module firstly sends the file size to the MCU as a
notification to start the download. When the MCU confirms that the package length
is valid, it will pull the file package, otherwise, the pulling process will be interrupted
and exit.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

64 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Command 1 0x31

Data length 2 0x0004

Data 4 The file size is in byte
measurement, the data
type is unsigned integer,
and the data storage is
in big-endian format.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, the length of the file is 26,624, which is 26 KB.

55 aa 00 31 00 04 00006800 9C

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x31

Data length 2 0x0001

Data 1 Packet size of file
package:

0x00: 256 byte

0x01: 512 byte

0x02: 1,024 byte

65 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example, 55 aa 03 31 00 01 00 34

Transmitting file package

Description:

• The data format of upgrade package transmission: packet offset + packet data.

• If the MCU receives the frame with data length equal to 4 bytes and the up-
grade packet offset is equal to or greater than the size of firmware, the packet
transmission ends.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x32

Data length 2 The data length is the
sum of 0X0004 and the
data packet length

Data N The first four bytes are
fixed as packet offset,
and the latter bytes are
the packet content

66 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

For example:

If the file to be upgraded has 530 bytes in size, under this circumstance, the MCU
can skip the response to the last data packet.

• For the first packet data, the packet offset is 0x00000000, and the data packet
length is 256. 0x55aa 00 32 0104 00000000 xx…xx XX

• For the second packet data, packet offset is 0x00000100, and data packet
length is 256. 0x55aa 00 32 0104 00000100 xx…xx XX

• For the second to last packet data, the packet offset is 0x00000200, and the
data packet length is 18. 0x55aa 00 32 0016 00000200 xx…xx XX

• For the last packet data, packet offset is 0x00000212, and data packet length
is 0. 0x55aa 00 32 0004 00000212 xx…xx XX

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x32

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

67 / 96

4 PROTOCOL DETAILS

For example, 55 aa 03 32 00 00 34

4.29 Voice module protocol (optional)

Description:

• The protocols in this section apply to the general connection of the voice mod-
ule VWXR2.

• The general firmware of other non-voice modules does not have the relevant
protocol functions in this section.

Obtaining voice status code (optional)

Description:

The voice status code of the voice module will be returned automatically, and the
MCU can actively query it.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x60

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

68 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x60

Data length 2 0x0001

Data 1 Voice status code:

0: idle

1: mic mute

2: wake up

3: recording

4: recognizing

5: recognized
successfully

6: failed to recognize

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Mic mute setting (optional)

Description:

This command can mute the mic and query mute status.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

69 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Command 1 0x61

Data length 2 0x0001

Data 1 Mute setting value:

0: mic is on

1: mic is mute

0xA0: query the mute
status

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x61

Data length 2 0x0001

Data 1 Mute status value:

0: mic is on

1: mic is mute

70 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Speaker volume setting (optional)

Description:

This command can set the volume and query the volume.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x62

Data length 2 0x0001

Data 1 Volume value: 0-10

Query volume: 0xA0

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

71 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Version 1 0x00

Command 1 0x62

Data length 2 0x0001

Data 1 Volume value: 0-10

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Audio production test (optional)

Description:

The audio production test is to record and play at the same time and compare the
input and output audio signals of the module through acoustic instruments.

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x63

Data length 2 0x0001

Data 1 Audio production test
value:

0: close audio
production test

1: mic1 audio loop test

2: mic2 audio loop test

72 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

0xA0: query current
production test status

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x63

Data length 2 0x0001

Data 1 Current production test
value

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Wake-up production test (optional)

Description:

After entering the wake-up test, it is required to play the electrical signal of the
wake-up word for 10 seconds. It will return failure after 10 seconds.

MCU sends:

73 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x64

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x64

Data length 2 0x0001

Data 0 Wake-up return result

0: wake-up failed

1: wake-up succeeded

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

74 / 96

4 PROTOCOL DETAILS

Extension functions

Description:

Extend the system functions of the voice module

• Status notification and settings of play/pause, Bluetooth on/off, local alarm
clock, and voice control group.

• Play/pause: play and pause music, poems, and jokes.
• Bluetooth on/off: turn on/off Bluetooth speaker.
• Local alarm clock: synchronization notification of the clock data set by the
voice and app.

• Voice control group: notification of voice control command of the previous/next
song.

• MCU function setting

MCU sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 N

Data 1 Sub-command: 0x00

{“play”:true,”bt_play”
:true}

play: play/pause
function. true is for play,
and false is for pause.

bt_play: Bluetooth on/off
function. true is for on,
and false is for off.

MCU settings currently
only support play/pause
and Bluetooth on/off.

75 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x0002

Data 1 Sub-command: 0x00

1 Result:

0x00: indicates success

0x01: indicates failure

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

• Status notification

The module sends:

Field Length (byte) Description

Header 2 0x55aa

76 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Version 1 0x00

Command 1 0x65

Data length 2 1+N

Data 1 Sub-command: 0x01

{“play”:true,”bt_play”
:true,” alarm”:”xxxx”,
” ctrl_group”:”xxxx”}

play: play/pause
function.true is for play,
and false is for pause.

bt_play: Bluetooth on/off
function. true is for on,
and false is for off.

alarm: local alarm clock.
xxx is string.

ctrl_group: voice control
group. xxx is string.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 2

Data 1 Sub-command: 0x01

77 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

1 Result:

0x00: indicates success

0x01: indicates failure

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.30 Extended service of the module

Enabling time service notification of the module

Description:

• If MCU requires the notification that whether the module time is calibrated in
the cloud every time the module is powered on again, you can enable the
module time service notification, and the module will actively send the time
data to the MCU.

• When the module is powered on, the service is enabled. If the time is cali-
brated, the module will actively send the relevant time data to the MCU.

• When the module is not powered on again, the service cannot be enabled re-
peatedly after it is enabled. If the module does not reboot, you need to imple-
ment time obtaining protocol.

• Currently, for the protocol of obtaining system time (GMT) and obtaining local
time, the timestamp will not be calibrated after the module is connected to the
server. A time period determines that MCU will continuously attempt to obtain
the time every time the module is powered on. Enabling this service will allow
the module to actively notify MCU of the calibrated time.

MCU sends:

78 / 96

4 PROTOCOL DETAILS

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0002

Data 1 0x01 (sub-command)

1 0x00: indicates GMT

0x01: indicates the local
time

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x01 (sub-command)

1 0x00: indicates the
service is successfully
enabled. 0x01:
indicates that it fails to
enable the service

79 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Time service notification of the module

Description:

• The module sends the corresponding time data according to the time service
notification requirements.

• When the module is powered on again, this service is disabled. The MCU needs
to resend the command to enable the service.

The module sends:

Field Length Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0009

Data 1 0x02 (sub-command)

1 0x00: indicates GMT

0x01: indicates the local
time

7 Data length is 6 bytes:

Data[0] is the year, and
0x00 represents the
year of 2000.

80 / 96

4 PROTOCOL DETAILS

Field Length Description

Data[1] is the month,
ranging from 1 to 12.

Data[2] is the day,
ranging from 1 to 31.

Data[3] is the hour,
ranging from 0 to 23.

Data[4] is the minute,
ranging from 0 to 59.

Data[5] is the second,
ranging from 0 to 59.

Data[6] is the week,
ranging from 1 to 7, and
1 represents Monday.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x02 (sub-command)

81 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Active request for weather service data

Description:

• For certain products, it is required to actively obtain weather data based on the
service of actively sending weather data every 30 minutes. This command is
used to actively obtain weather service interface data.

• The frequency of using this command cannot be less than one minute, and
multiple requests within one minute are processed only once.

• This command is used to confirm the data request. Sending data is still imple-
mented through command 0x21.

MCU sends:

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x03 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

82 / 96

4 PROTOCOL DETAILS

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x03 (sub-command)

1 Result:

0x00: indicates success

0x01: indicates failure

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Enabling module reset status notification (optional)

Description:

Currently, the module can be removed locally or on the app, and restore the factory
settings on the app. But the MCU does not know the module status. This service is
used to enable module status notification.

MCU sends:

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

83 / 96

4 PROTOCOL DETAILS

Field Length Description

Data 1 0x04 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x04 (sub-command)

1 Result:

0x00: indicates success

0x01: indicates failure

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module reset status notification (optional)

Device reset status Description Status value

Status 1 Locally reset the module 0x00

84 / 96

4 PROTOCOL DETAILS

Device reset status Description Status value

Status 2 Remotely reset the
moduleon the app

0x01

Status 3 Restore factory setting
on the app

0x02

Description:

The reset status will be sent twice at most at the interval of one second.

The module sends:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x05 (sub-command)

1 Reset status:

0x00: locally reset the
module

0x01: remotely reset
the module on the app

0x02: restore factory
setting on the app

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

85 / 96

4 PROTOCOL DETAILS

MCU returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x05 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

4.31 Bluetooth function (optional)

Bluetooth functional test (scan the specified Bluetooth beacon)

Description:

• The module scans the Bluetooth beacon of ty_mdev and returns results and sig-
nal strength percentage.

• In order to prevent defective products to the greatest extent, it is recom-
mended that the distance between the router and the device should be about
5 meters. The test result is qualified if the signal strength is greater than or
equal to 60%. It can be adjusted based on the actual production line and
factory environment.

MCU sends:

Field Length Description

Header 2 0x55aa

Version 1 0x03

86 / 96

4 PROTOCOL DETAILS

Field Length Description

Command 1 0x35

Data length 2 0x0001

Data 1 0x01 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

Module returns:

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x35

Data length 2 0x0003

Data 1 0x01 (sub-command)

2 Data length has 2 bytes.

Data[0]: 0x00 indicates
failure, and 0x01
indicates success.

When Data[0] is 0x01,
which indicates success,
Data[1] is signal
strength (from 0 to100,
0 represents the
weakest signal, and 100
represents the strongest
signal).

87 / 96

4 PROTOCOL DETAILS

Field Length (byte) Description

When Data[0] is 0x00,
which indicates failure, if
Data[1] is 0x00, the
specified Bluetooth
beacon is not found; if
Data[1] is 0x01, an
authorization key is not
burned to the module.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the
remainder

88 / 96

5 VERSION HISTORY

5 Version history

Version Description Date Remark

1.2.3 Modified 20200521 1. Add the IR
function field and
low power
selection field to
the product
information
packet.

2. Add the
command to
actively obtain
weather service.

3. Add the
command to
notify reset
status.

4. Modify the
name description
of the module
working mode.

1.2.2 Modified 20200411 Add the extension
functions of voice
module VWXR2,
supporting
play/pause,
Bluetooth on/off,
local alarm clock,
and control group.

1.2.1 Modified 20200409 1. Add Wi-Fi
production test.

89 / 96

5 VERSION HISTORY

Version Description Date Remark

2. Add Wi-Fi
remote control
function.

1.2.0 Modified 20200331 Add functions that
adapt to CI
baselines,
including network
status packet and
product
information field.

1.1.9 Modified 20200326 1. Reorganize the
voice module
protocols.

2. Add module
extension
services.

3. Add dual-mode
Bluetooth
production test.

1.1.8 Modified 20200218 1. Add volume
setting and mic
control protocol
to voice module
VWXR2.

2. Add audio
production test
and wake-up
production test
protocol.

90 / 96

5 VERSION HISTORY

Version Description Date Remark

1.1.7 Modified 20191119 1. Add data
protocol for
multiple maps of
the robot
vacuum.

2. Add a
third-party file
download
channel.

3. Improve the
document
protocol
description.

1.1.6 Modified 20190828 Add IR capability
protocols.

1.1.5 Modified 20190824 1. Add the
interface to
obtain the MAC
address of the
module.

2. Improve the
function
description of
obtaining weather
data.

1.1.4 Modified 20190617 1. Add the
performance test
of the Wi-Fi
connection.

91 / 96

5 VERSION HISTORY

Version Description Date Remark

2. Optimize the
streaming service
process, and only
retain the
streaming data
report protocol.
The firmware is
compatible with
the old version of
the streaming
service
mechanism.

1.1.3 Modified 20190415 1. Improve the
description of the
function
command
mechanism.

2. Add the map
service command
for the robot
vacuum.

1.1.2 Modified 20181217 1. Add serial port
network protocol.

2. Add the
protocol of MCU
obtaining Wi-Fi
network status.

1.1.1 Modified 20180810 Modify the return
package content
of initiating MCU
firmware upgrade
(compatible with
old firmware).

92 / 96

5 VERSION HISTORY

Version Description Date Remark

1.1.0 Modified 20180329 Add the protocol
to disable Wi-Fi
module
heartbeat.

1.0.9 Modified 20180119 1. Add the
function of the
synchronizing
command report.
After receiving
the
synchronization
command, the
Wi-Fi module will
notify MCU when
the report fails or
succeeds.

2 Add the function
of obtaining Wi-Fi
signal strength, in
unit of DB.

1.0.8 Modified 20170512 1. Add the
interface for
enabling weather
data obtaining.

2. Add the
interface for
sending weather
data.

3. Adjust the
heartbeat
detection interval
to 15 seconds.

93 / 96

5 VERSION HISTORY

Version Description Date Remark

1.0.7 Modified 20170216 1. Add the
network
configuration
mode setting
(extend the
interface for
product
information
query).

2. The MCU
protocol version
number is
uniformly
upgraded to
0x03.

1.0.6 Modified 20161110 1. Add Wi-Fi
working status.

2. The MCU
protocol version
number is
uniformly
upgraded to
0x02.

1.0.5 Modified 20160607 1. Delete the
upgrade query
command.

2. Delete the
command to
notify MCU to
enter the
production test
mode.

94 / 96

5 VERSION HISTORY

Version Description Date Remark

3. Modify the
upgrade startup
protocol,
supporting file
sizes above 64
KB.

1.0.4 Modified 20160512 1. Add the
command to
obtain the local
time.

2. Add the Wi-Fi
functional test.

3. Add the
command to
obtain the
module memory.

1.0.3 Modified 20151114 1. Add the
function of MCU
obtaining time.

2. Add the
function of MCU
obtaining time
zone.

3. Add the
function of
entering the
production test.

95 / 96

5 VERSION HISTORY

Version Description Date Remark

1.0.2 Modified 20151017 1. Add the
function of the
MCU rebooting
test to the
heartbeat
detection
protocol.

2. The heartbeat
detection interval
is adjusted to 10
seconds.

3. The module
Wi-Fi status report
is updated to the
module actively
reporting the
status to the
MCU.

1.0.1 Modified 20151013 Change product
ID query to
module
information
query, and add
the function of
returning device
version
information.

1.0.0 The first release. 20151010 Create

96 / 96

	Serial communication convention
	Frame format description
	Status data unit
	Protocol details
	Detecting heartbeat
	Querying product information
	Querying working mode
	Reporting device network status
	Resetting Wi-Fi
	Resetting Wi-Fi and select configuration mode
	Sending command
	Reporting Status
	Querying Status
	MCU upgrade service
	Obtaining system time (GMT)
	Obtaining local time
	Wi-Fi functional test (scan the designated router)
	Obtaining module memory
	Enabling the function of obtaining weather data (optional)
	Sending weather data (optional)
	Reporting Status (synchronous)
	Obtaining current Wi-Fi signal strength (optional)
	Notifying Wi-Fi module to disable the heartbeat (optional)
	Interface for serial port network configuration (optional)
	Obtaining current Wi-Fi connection status
	Map data service of robot vacuum (optional)
	Wi-Fi functional test (connected to the designated router)
	Obtaining module MAC
	IR status notification (optional)
	Production test of IR receiving and sending (optional)
	Map streaming data transmission (optional)
	Downloading service of other files (optional)
	Voice module protocol (optional)
	Extended service of the module
	Bluetooth function (optional)

	Version history

