Files
Esp32Dimmer/src/components/esp32-triac-dimmer-driver/esp32-triac-dimmer-driver.c
2026-01-25 11:58:48 +00:00

558 lines
14 KiB
C

#include "esp32-triac-dimmer-driver.h"
static const char *TAG = "Esp32idfDimmer";
int pulseWidth = 2;
volatile int current_dim = 0;
int all_dim = 3;
int rise_fall = true;
char user_zero_cross = '0';
int debug_signal_zc = 0;
bool flagDebug = false;
static int toggleCounter = 0;
static int toggleReload = 25;
volatile bool _initDone = false;
volatile int _steps = 0;
static dimmertyp *dimmer[ALL_DIMMERS];
volatile bool firstSetup = false;
volatile uint16_t dimPower[ALL_DIMMERS];
volatile gpio_num_t dimOutPin[ALL_DIMMERS];
volatile gpio_num_t dimZCPin[ALL_DIMMERS];
volatile uint16_t zeroCross[ALL_DIMMERS];
volatile DIMMER_MODE_typedef dimMode[ALL_DIMMERS];
volatile ON_OFF_typedef dimState[ALL_DIMMERS];
volatile uint16_t dimCounter[ALL_DIMMERS];
static uint16_t dimPulseBegin[ALL_DIMMERS];
volatile uint16_t togMax[ALL_DIMMERS];
volatile uint16_t togMin[ALL_DIMMERS];
volatile bool togDir[ALL_DIMMERS];
/* timer configurations */
gptimer_config_t m_timer_config;
gptimer_handle_t gptimer = NULL;
typedef struct {
uint64_t event_count;
} example_queue_element_t;
/* Event queue for single-fire timer implementation */
static timer_event_t event_queue[MAX_TIMER_EVENTS];
static volatile int event_queue_size = 0;
static uint64_t alarm_interval_ticks = 100; // Will be calculated based on AC frequency
dimmertyp *createDimmer(gpio_num_t user_dimmer_pin, gpio_num_t zc_dimmer_pin)
{
if (current_dim >= ALL_DIMMERS)
{
return NULL;
}
current_dim++;
dimmer[current_dim - 1] = malloc(sizeof(dimmertyp));
dimmer[current_dim - 1]->current_num = current_dim - 1;
dimmer[current_dim - 1]->toggle_state = false;
dimPulseBegin[current_dim - 1] = 1;
dimOutPin[current_dim - 1] = user_dimmer_pin;
dimZCPin[current_dim - 1] = zc_dimmer_pin;
dimCounter[current_dim - 1] = 0;
zeroCross[current_dim - 1] = 0;
dimMode[current_dim - 1] = NORMAL_MODE;
togMin[current_dim - 1] = 0;
togMax[current_dim - 1] = 1;
// Return the pointer
return dimmer[current_dim - 1];
}
/**
* @brief Initialize the event queue
*/
static void init_event_queue(void)
{
for (int i = 0; i < MAX_TIMER_EVENTS; i++)
{
event_queue[i].active = false;
event_queue[i].timestamp = 0;
event_queue[i].dimmer_id = 0;
event_queue[i].event_type = EVENT_FIRE_TRIAC;
}
event_queue_size = 0;
}
/**
* @brief Find the next event in queue (earliest timestamp)
* @return Index of next event, or -1 if queue is empty
*/
static int find_next_event_index(void)
{
int next_idx = -1;
uint64_t earliest_time = UINT64_MAX;
for (int i = 0; i < MAX_TIMER_EVENTS; i++)
{
if (event_queue[i].active && event_queue[i].timestamp < earliest_time)
{
earliest_time = event_queue[i].timestamp;
next_idx = i;
}
}
return next_idx;
}
/**
* @brief Schedule a timer event
* @param timestamp Absolute timestamp when event should occur
* @param dimmer_id Which dimmer this event affects
* @param event_type Type of event (fire or end pulse)
* @return true if event was scheduled, false if queue is full or invalid input
*/
static bool schedule_timer_event(uint64_t timestamp, uint8_t dimmer_id, timer_event_type_t event_type)
{
// Validate dimmer_id to prevent array bounds violations
if (dimmer_id >= ALL_DIMMERS)
{
ESP_LOGE(TAG, "Invalid dimmer_id: %d (max: %d)", dimmer_id, ALL_DIMMERS - 1);
return false;
}
// Find an empty slot
for (int i = 0; i < MAX_TIMER_EVENTS; i++)
{
if (!event_queue[i].active)
{
event_queue[i].timestamp = timestamp;
event_queue[i].dimmer_id = dimmer_id;
event_queue[i].event_type = event_type;
event_queue[i].active = true;
event_queue_size++;
return true;
}
}
// Queue is full
ESP_LOGE(TAG, "Event queue full!");
return false;
}
/**
* @brief Remove an event from the queue
* @param index Index of event to remove
*/
static void remove_event(int index)
{
if (index >= 0 && index < MAX_TIMER_EVENTS && event_queue[index].active)
{
event_queue[index].active = false;
event_queue_size--;
}
}
#define TIMER_BASE_CLK 1 * 1000 * 1000, // 1MHz, 1 tick = 1us
/**
* @brief Configure the timer alarm
*/
void config_alarm(gptimer_handle_t *timer, int ACfreq)
{
/*self regulation 50/60 Hz*/
double m_calculated_interval = (1 / (double)(ACfreq * 2)) / 100;
ESP_LOGI(TAG, "Interval between wave calculated for frequency : %3dHz = %5f", ACfreq, m_calculated_interval);
// Store the interval in ticks for use in event scheduling
alarm_interval_ticks = (uint64_t)(1000000 * m_calculated_interval);
ESP_LOGI(TAG, "Timer interval in ticks: %llu", alarm_interval_ticks);
ESP_LOGI(TAG, "Timer configuration - configure interrupt and timer");
ESP_LOGI(TAG, "Timer configuration - configure alarm");
gptimer_alarm_config_t alarm_config = {
.reload_count = 0, // counter will reload with 0 on alarm event
.alarm_count = alarm_interval_ticks,
.flags.auto_reload_on_alarm = true, // enable auto-reload
};
ESP_LOGI(TAG, "Timer configuration - set alarm action");
ESP_ERROR_CHECK(gptimer_set_alarm_action(gptimer, &alarm_config));
gptimer_event_callbacks_t cbs = {
.on_alarm = onTimerISR, // register user callback
};
ESP_LOGI(TAG, "Timer configuration - register event callbacks");
ESP_ERROR_CHECK(gptimer_register_event_callbacks(gptimer, &cbs, NULL));
ESP_LOGI(TAG, "Timer configuration - configuration completed");
}
void config_timer(int ACfreq)
{
ESP_LOGI(TAG, "Timer configuration - start");
/*System timer startup has been done*/
if (_initDone)
{
ESP_LOGW(TAG, "Timer configuration - timer already configured");
return;
}
memset(&m_timer_config, 0, sizeof(m_timer_config));
/* Initialize event queue */
init_event_queue();
ESP_LOGI(TAG, "Event queue initialized");
/* Prepare configuration */
gptimer_config_t m_timer_config = {
.clk_src = GPTIMER_CLK_SRC_DEFAULT,
.direction = GPTIMER_COUNT_UP,
.resolution_hz = TIMER_BASE_CLK
};
ESP_LOGI(TAG, "Timer configuration - configure interrupt and timer");
/* Configure the alarm value and the interrupt on alarm. */
ESP_ERROR_CHECK(gptimer_new_timer(&m_timer_config, &gptimer));
/* Configure the alarm value and the interrupt on alarm. */
config_alarm(gptimer, ACfreq);
/* start timer */
ESP_LOGI(TAG, "Timer configuration - start timer");
ESP_ERROR_CHECK(gptimer_enable(gptimer));
ESP_ERROR_CHECK(gptimer_start(gptimer));
ESP_LOGI(TAG, "Timer configuration - completed");
}
/*Zero-crossing pin setting
*set as input
*set as pullup
*set its interrupt*/
void ext_int_init(dimmertyp *ptr)
{
ESP_LOGI(TAG, "Setting ZCPin : %3d as input", dimZCPin[ptr->current_num]);
ESP_LOGI(TAG, "Checking for previous declaration of zc input on the same gpio");
/*Zero crossing*/
bool alreadyInit = false;
for (int i = 0; i < ptr->current_num; i++)
{
if (dimZCPin[i] == dimZCPin[ptr->current_num])
{
alreadyInit = true;
}
}
ESP_LOGI(TAG, "Already init = %3d", alreadyInit);
if (!alreadyInit)
{
gpio_set_direction(dimZCPin[ptr->current_num], GPIO_MODE_INPUT);
gpio_set_intr_type(dimZCPin[ptr->current_num], GPIO_INTR_NEGEDGE);
gpio_intr_enable(dimZCPin[ptr->current_num]);
gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);
gpio_isr_handler_add(dimZCPin[ptr->current_num], isr_ext, (void *)dimZCPin[ptr->current_num]);
}
ESP_LOGI(TAG, "Zero Cross interrupt configuration - completed");
/*TRIAC command - configuration*/
ESP_LOGI(TAG, "Triac command configuration");
gpio_set_direction(dimOutPin[ptr->current_num], GPIO_MODE_OUTPUT);
ESP_LOGI(TAG, "Triac command configuration - completed");
}
/*ISR debug region*/
#if DEBUG_ZERO_CROSS_SIGNAL == ISR_DEBUG_ON
static QueueHandle_t gpio_zero_cross_evt_queue = NULL;
static void gpio_isr_zerocross_debug(void *arg)
{
uint32_t io_num;
for (;;)
{
if (xQueueReceive(gpio_zero_cross_evt_queue, &io_num, portMAX_DELAY))
{
ESP_LOGI(TAG, "Zero-cross trigger fired");
}
}
}
#endif
/*ISR timer debug region*/
#if DEBUG_ISR_TIMER == ISR_DEBUG_ON
static QueueHandle_t timer_event_queue = NULL;
static void timer_isr_debug(void *arg)
{
uint32_t io_num;
for (;;)
{
if (xQueueReceive(timer_event_queue, &io_num, portMAX_DELAY))
{
printf("Timer interrupt event , counter = %5lu \n", io_num);
}
}
}
#endif
void begin(dimmertyp *ptr, DIMMER_MODE_typedef DIMMER_MODE, ON_OFF_typedef ON_OFF, int FREQ)
{
ESP_LOGI(TAG, "Dimmer - begin");
dimMode[ptr->current_num] = DIMMER_MODE;
dimState[ptr->current_num] = ON_OFF;
#if DEBUG_ZERO_CROSS_SIGNAL == ISR_DEBUG_ON
if (!_initDone)
{
// create a queue to handle gpio event from isr
gpio_zero_cross_evt_queue = xQueueCreate(10, sizeof(uint32_t));
// start gpio task
xTaskCreate(gpio_isr_zerocross_debug, "gpio_isr_debug", 2048, NULL, 10, NULL);
}
#endif
#if DEBUG_ISR_TIMER == ISR_DEBUG_ON
if (!_initDone)
{
// create a queue to handle timer event
timer_event_queue = xQueueCreate(10, sizeof(uint32_t));
// start gpio task
xTaskCreate(timer_isr_debug, "timer_isr_debug", 2048, NULL, 10, NULL);
}
#endif
config_timer(FREQ);
ext_int_init(ptr);
// init completed
_initDone = true;
ESP_LOGI(TAG, "Dimmer begin - completed");
}
void setPower(dimmertyp *ptr, int power)
{
if (power >= 99)
{
power = 99;
}
dimPower[ptr->current_num] = power;
dimPulseBegin[ptr->current_num] = powerBuf[power];
vTaskDelay(1);
}
int getPower(dimmertyp *ptr)
{
if (dimState[ptr->current_num] == ON)
return dimPower[ptr->current_num];
else
return 0;
}
void setState(dimmertyp *ptr, ON_OFF_typedef ON_OFF)
{
dimState[ptr->current_num] = ON_OFF;
}
bool getState(dimmertyp *ptr)
{
bool ret;
if (dimState[ptr->current_num] == ON)
ret = true;
else
ret = false;
return ret;
}
void changeState(dimmertyp *ptr)
{
if (dimState[ptr->current_num] == ON)
dimState[ptr->current_num] = OFF;
else
dimState[ptr->current_num] = ON;
}
DIMMER_MODE_typedef getMode(dimmertyp *ptr)
{
return dimMode[ptr->current_num];
}
void setMode(dimmertyp *ptr, DIMMER_MODE_typedef DIMMER_MODE)
{
dimMode[ptr->current_num] = DIMMER_MODE;
}
void toggleSettings(dimmertyp *ptr, int minValue, int maxValue)
{
if (maxValue > 99)
{
maxValue = 99;
}
if (minValue < 1)
{
minValue = 1;
}
dimMode[ptr->current_num] = TOGGLE_MODE;
togMin[ptr->current_num] = powerBuf[maxValue];
togMax[ptr->current_num] = powerBuf[minValue];
toggleReload = 50;
}
static void IRAM_ATTR isr_ext(void *arg)
{
#if DEBUG_ZERO_CROSS_SIGNAL == ISR_DEBUG_ON
uint32_t gpio_num = (uint32_t)arg;
xQueueSendFromISR(gpio_zero_cross_evt_queue, &gpio_num, NULL);
#endif
// Get current timer count
uint64_t zc_time = 0;
gptimer_get_raw_count(gptimer, &zc_time);
for (int i = 0; i < current_dim; i++)
{
if (dimState[i] == ON)
{
// Calculate the exact time to fire the triac
// fire_time = current_time + (dimPulseBegin[i] * interval_per_step)
uint64_t fire_delay = (uint64_t)dimPulseBegin[i] * alarm_interval_ticks;
uint64_t fire_time = zc_time + fire_delay;
// Schedule the fire event
schedule_timer_event(fire_time, i, EVENT_FIRE_TRIAC);
// Also set legacy zeroCross flag for compatibility
zeroCross[i] = 1;
}
}
}
static int k;
#if DEBUG_ISR_TIMER == ISR_DEBUG_ON
static int counter = 0;
#endif
/* Execution on timer event */
static void IRAM_ATTR onTimerISR(void *para)
{
/**********************************/
#if DEBUG_ISR_TIMER == ISR_DEBUG_ON
counter++;
uint32_t info = (uint32_t)counter;
xQueueSendFromISR(timer_event_queue, &info, NULL);
#endif
// Get current timer count
uint64_t current_time = 0;
gptimer_get_raw_count(gptimer, &current_time);
// Process all events that should fire at or before current time
// Note: We scan through all events once to avoid O(n²) complexity
// This is acceptable since MAX_TIMER_EVENTS is small (100)
for (int i = 0; i < MAX_TIMER_EVENTS; i++)
{
if (!event_queue[i].active)
continue;
if (event_queue[i].timestamp > current_time)
continue;
timer_event_t *event = &event_queue[i];
// Validate dimmer_id to prevent array bounds violations
if (event->dimmer_id < ALL_DIMMERS)
{
if (event->event_type == EVENT_FIRE_TRIAC)
{
// Fire the triac
gpio_set_level(dimOutPin[event->dimmer_id], 1);
// Schedule pulse end event
uint64_t pulse_end_time = current_time + ((uint64_t)pulseWidth * alarm_interval_ticks);
bool scheduled = schedule_timer_event(pulse_end_time, event->dimmer_id, EVENT_END_PULSE);
// If scheduling failed, turn off triac immediately to prevent it staying on
if (!scheduled)
{
gpio_set_level(dimOutPin[event->dimmer_id], 0);
ESP_LOGE(TAG, "Failed to schedule pulse end for dimmer %d", event->dimmer_id);
}
}
else if (event->event_type == EVENT_END_PULSE)
{
// Turn off triac gate
gpio_set_level(dimOutPin[event->dimmer_id], 0);
zeroCross[event->dimmer_id] = 0;
dimCounter[event->dimmer_id] = 0;
}
}
else
{
ESP_LOGE(TAG, "Invalid dimmer_id in event: %d", event->dimmer_id);
}
// Remove processed event
remove_event(i);
}
// Legacy code for backward compatibility and toggle mode
toggleCounter++;
for (k = 0; k < current_dim; k++)
{
if (zeroCross[k] == 1)
{
dimCounter[k]++;
if (dimMode[k] == TOGGLE_MODE)
{
/*****
* TOGGLE DIMMING MODE
*****/
if (dimPulseBegin[k] >= togMax[k])
{
// if reach max dimming value
togDir[k] = false; // downcount
}
if (dimPulseBegin[k] <= togMin[k])
{
// if reach min dimming value
togDir[k] = true; // upcount
}
if (toggleCounter == toggleReload)
{
if (togDir[k] == true)
dimPulseBegin[k]++;
else
dimPulseBegin[k]--;
}
}
// The event queue handles firing, but we keep this for any edge cases
// where events weren't scheduled (shouldn't happen in normal operation)
/*****
* DEFAULT DIMMING MODE (NOT TOGGLE)
*****/
if (dimCounter[k] >= dimPulseBegin[k])
{
// Event queue should have already fired, but check anyway
// This is a safety fallback
if (gpio_get_level(dimOutPin[k]) == 0)
{
gpio_set_level(dimOutPin[k], 1);
}
}
if (dimCounter[k] >= (dimPulseBegin[k] + pulseWidth))
{
// Event queue should have already turned off, but check anyway
// This is a safety fallback
if (gpio_get_level(dimOutPin[k]) == 1)
{
gpio_set_level(dimOutPin[k], 0);
}
zeroCross[k] = 0;
dimCounter[k] = 0;
}
}
}
if (toggleCounter >= toggleReload)
toggleCounter = 1;
}