MQSensorsLib/src/MQUnifiedsensor.cpp

141 lines
5.1 KiB
C++
Raw Normal View History

2019-04-30 08:52:47 -05:00
#include "MQUnifiedsensor.h"
2020-03-26 10:56:52 -05:00
MQUnifiedsensor::MQUnifiedsensor(String Placa, double Voltage_Resolution, int pin, String type) {
2019-04-30 08:52:47 -05:00
this->_pin = pin;
this->_type = type; //MQ-2, MQ-3 ... MQ-309A
this->_placa = Placa;
this-> _VOLT_RESOLUTION = Voltage_Resolution;
}
2020-03-26 10:56:52 -05:00
void MQUnifiedsensor::init()
{
pinMode(_pin, INPUT);
}
void MQUnifiedsensor::setA(double a) {
2020-03-26 10:23:51 -05:00
this->_a = a;
}
2020-03-26 10:56:52 -05:00
void MQUnifiedsensor::setB(double b) {
2020-03-26 10:23:51 -05:00
this->_b = b;
}
2020-03-26 10:56:52 -05:00
void MQUnifiedsensor::setR0(double R0) {
this->_R0 = R0;
}
void MQUnifiedsensor::setRL(double RL) {
this->_RL = RL;
}
void MQUnifiedsensor::setVoltResolution(double voltage_resolution)
{
_VOLT_RESOLUTION = voltage_resolution;
}
void MQUnifiedsensor::setRegressionMethod(String regressionMethod)
{
this->_regressionMethod = regressionMethod;
}
double MQUnifiedsensor::getR0() {
return _R0;
}
double MQUnifiedsensor::getRL() {
return _RL;
}
void MQUnifiedsensor::serialDebug(bool onSetup)
{
if(onSetup)
2019-05-23 15:17:39 -05:00
{
Serial.println("************************************************************************************************************************************************");
Serial.println("MQ sensor reading library for arduino");
Serial.println("Note: remember that all the parameters below can be modified during the program execution with the methods:");
Serial.println("setR0, setRL, setA, setB where you will have to send as parameter the new value, example: mySensor.setR0(20); //R0 = 20K");
Serial.println("Authors: Miguel A. Califa U - Yersson R. Carrillo A - Ghiordy F. Contreras C");
Serial.println("Contributors: Andres A. Martinez - Juan A. Rodríguez - Mario A. Rodríguez O ");
Serial.println("Sensor:" + _type);
2020-03-26 10:56:52 -05:00
Serial.print("Supply voltage:"); Serial.println(_VOLT_RESOLUTION);
Serial.print("R0: "); Serial.println(_R0);
Serial.print("RL: "); Serial.println(_RL);
Serial.println("Model: Logarithmic regression with parameters.");
2020-03-26 10:56:52 -05:00
Serial.print(_type + ":" + "a:"); Serial.print(_a); Serial.print(" | b:"); Serial.println(_b);
Serial.println("Development board: " + _placa);
2019-05-23 15:17:39 -05:00
}
else
2019-05-23 15:17:39 -05:00
{
if(!_firstFlag)
{
2020-03-26 11:08:53 -05:00
Serial.println("| ********************************************************************" + _type + "*********************************************************************|");
Serial.println("|ADC_In | Equation_V_ADC | Voltage_ADC | Equation_R | Resistance_RS | EQ_Ratio | Ratio (RS/R0) | Equation_PPM | PPM |");
_firstFlag = true; //Headers are printed
}
else
{
String eq = "";
2020-03-26 10:56:52 -05:00
if(_regressionMethod == "Linear") eq = "ratio*a + b";
if(_regressionMethod == "Exponential") eq = "a*ratio^b";
2020-03-26 11:08:53 -05:00
Serial.print("|"); Serial.print(_adc); Serial.print("| v = ADC*"); Serial.print(_VOLT_RESOLUTION); Serial.print("/1024 | "); Serial.print(_sensor_volt);
Serial.print(" | RS = ((" ); Serial.print(_VOLT_RESOLUTION ); Serial.print("*RL)/Voltage) - RL| "); Serial.print(_RS_Calc); Serial.print(" | Ratio = RS/R0| ");
Serial.print(_ratio); Serial.print( " | " + eq + " | "); Serial.print(_PPM); Serial.println(" |");
}
2019-05-23 15:17:39 -05:00
}
2019-04-30 08:52:47 -05:00
}
2019-08-14 20:47:24 -05:00
void MQUnifiedsensor::update()
{
_sensor_volt = this->getVoltage();
}
2020-03-26 10:56:52 -05:00
float MQUnifiedsensor::readSensor()
2019-04-30 08:52:47 -05:00
{
2019-08-15 20:47:42 -05:00
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
2020-03-26 10:56:52 -05:00
_RS_Calc = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
if(_RS_Calc < 0) _RS_Calc = 0; //No negative values accepted.
2019-08-14 20:47:24 -05:00
_ratio = _RS_Calc / this->_R0; // Get ratio RS_gas/RS_air
if(_ratio <= 0 || _ratio>100) _ratio = 0.01; //No negative values accepted or upper datasheet recomendation.
2020-03-26 10:56:52 -05:00
if(_regressionMethod == "Exponential") _PPM= _a*pow(_ratio, _b);
if(_regressionMethod == "Linear") _PPM= _a*_ratio + _b;
if(_PPM < 0) _PPM = 0; //No negative values accepted or upper datasheet recomendation.
if(_PPM > 10000) _PPM = 9999; //No negative values accepted or upper datasheet recomendation.
2019-05-24 17:02:46 -05:00
return _PPM;
2019-04-30 08:52:47 -05:00
}
2020-03-26 10:09:36 -05:00
float MQUnifiedsensor::calibrate() {
2019-05-29 20:58:22 -05:00
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
/*
V = I x R
VRL = [VC / (RS + RL)] x RL
VRL = (VC x RL) / (RS + RL)
Así que ahora resolvemos para RS:
VRL x (RS + RL) = VC x RL
(VRL x RS) + (VRL x RL) = VC x RL
(VRL x RS) = (VC x RL) - (VRL x RL)
RS = [(VC x RL) - (VRL x RL)] / VRL
RS = [(VC x RL) / VRL] - RL
*/
2019-07-22 22:27:47 -05:00
float RS_air; //Define variable for sensor resistance
float R0; //Define variable for R0
2020-03-26 10:56:52 -05:00
RS_air = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Calculate RS in fresh air
if(RS_air < 0) RS_air = 0; //No negative values accepted.
2019-05-29 20:58:22 -05:00
R0 = RS_air/_ratioInCleanAir; //Calculate R0
if(R0 < 0) R0 = 0; //No negative values accepted.
2019-05-29 20:58:22 -05:00
return R0;
2019-04-30 08:52:47 -05:00
}
2019-06-01 18:00:10 -05:00
double MQUnifiedsensor::getVoltage(int read) {
double voltage;
2019-06-01 18:00:10 -05:00
if(read)
{
double avg = 0.0;
for (int i = 0; i < retries; i ++) {
_adc = analogRead(this->_pin);
avg += _adc;
2019-06-01 18:00:10 -05:00
delay(retry_interval);
}
2019-06-01 18:21:14 -05:00
voltage = (avg/ retries) * _VOLT_RESOLUTION / (pow(2, ADC_RESOLUTION) - 1);
2019-04-30 08:52:47 -05:00
}
else
{
voltage = _sensor_volt;
}
2019-04-30 08:52:47 -05:00
return voltage;
}
2019-05-24 22:14:34 -05:00
double MQUnifiedsensor::stringToDouble(String & str)
2019-05-24 22:09:11 -05:00
{
return atof( str.c_str() );
2019-05-24 17:13:54 -05:00
}