{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (0.24.2)\n", "Requirement already satisfied: pytz>=2011k in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2018.9)\n", "Requirement already satisfied: python-dateutil>=2.5.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2.8.0)\n", "Requirement already satisfied: numpy>=1.12.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (1.16.2)\n", "Requirement already satisfied: six>=1.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from python-dateutil>=2.5.0->pandas) (1.12.0)\n", "Requirement already satisfied: xlrd in c:\\programdata\\anaconda3\\lib\\site-packages (1.2.0)\n", "Requirement already satisfied: sklearn in c:\\programdata\\anaconda3\\lib\\site-packages (0.0)\n", "Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (from sklearn) (0.21.2)\n", "Requirement already satisfied: scipy>=0.17.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn->sklearn) (1.2.1)\n", "Requirement already satisfied: joblib>=0.11 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn->sklearn) (0.13.2)\n", "Requirement already satisfied: numpy>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn->sklearn) (1.16.2)\n", "Requirement already satisfied: imblearn in c:\\programdata\\anaconda3\\lib\\site-packages (0.0)\n", "Requirement already satisfied: imbalanced-learn in c:\\programdata\\anaconda3\\lib\\site-packages (from imblearn) (0.5.0)\n", "Requirement already satisfied: joblib>=0.11 in c:\\programdata\\anaconda3\\lib\\site-packages (from imbalanced-learn->imblearn) (0.13.2)\n", "Requirement already satisfied: scipy>=0.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from imbalanced-learn->imblearn) (1.2.1)\n", "Requirement already satisfied: numpy>=1.11 in c:\\programdata\\anaconda3\\lib\\site-packages (from imbalanced-learn->imblearn) (1.16.2)\n", "Requirement already satisfied: scikit-learn>=0.21 in c:\\programdata\\anaconda3\\lib\\site-packages (from imbalanced-learn->imblearn) (0.21.2)\n" ] } ], "source": [ "!pip install pandas\n", "!pip install xlrd\n", "!pip install sklearn\n", "!pip install imblearn" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import xlrd\n", "book = xlrd.open_workbook(\"Datasheets info.xlsx\")\n", "sheetMQ2 = book.sheet_by_name(\"MQ2 - Pololulu\")\n", "sheetMQ3 = book.sheet_by_name(\"MQ3 - Sparkfun\")\n", "sheetMQ4 = book.sheet_by_name(\"MQ4 - Sparkfun\")\n", "sheetMQ5 = book.sheet_by_name(\"MQ5 - Sparkfun\")\n", "sheetMQ6 = book.sheet_by_name(\"MQ6 - Sparkfun\")\n", "sheetMQ7 = book.sheet_by_name(\"MQ7 - Sparkfun\")\n", "sheetMQ8 = book.sheet_by_name(\"MQ8 - Sparkfun\")\n", "sheetMQ9 = book.sheet_by_name(\"MQ9 - Haoyuelectronics\")\n", "sheetMQ131 = book.sheet_by_name(\"MQ131- Sensorsportal\")\n", "sheetMQ135 = book.sheet_by_name(\"MQ135 - HANWEI\")\n", "sheetMQ303A = book.sheet_by_name(\"MQ303A - HANWEI\")\n", "sheetMQ309A = book.sheet_by_name(\"MQ309A - HANWEI\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.1 \t \t \t \n", "0.2 \t \t \t \n", "0.3 \t \t \t \n", "0.4 \t \t \t \n", "0.5 \t \t \t 100.0\n", "0.6 \t \t \t \n", "0.7 \t \t \t \n", "0.8 \t \t \t \n", "0.9 \t \t \t \n", "1.0 \t \t 50.0 \t \n", "2.0 \t \t \t 20.0\n", "3.0 \t 100.0 \t \t \n", "4.0 \t \t \t \n", "5.0 \t \t \t \n", "6.0 \t \t 10.0 \t 5.0\n", "7.0 \t 10.0 \t \t \n", "8.0 \t \t 5.0 \t \n", "9.0 \t 5.0 \t \t \n", "10.0 \t \t \t \n" ] } ], "source": [ "for row_index in range(1,20): #reading first columns\n", " RsR0, Nox, CL2, O3 = sheetMQ131.row_values(row_index, start_colx=0, end_colx=4)\n", " print(RsR0, \"\t\", Nox, \"\t\", CL2, \"\t\", O3)\n", " " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x_MQ131 = sheetMQ131.col_values(0)[2:]\n", "MQ131_Nox = sheetMQ131.col_values(1)[2:]\n", "MQ131_CL2 = sheetMQ131.col_values(2)[2:]\n", "MQ131_O3 = sheetMQ131.col_values(3)[2:]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def zero_to_nan(values):\n", " \"\"\"Replace every 0 with 'nan' and return a copy.\"\"\"\n", " return [float('nan') if x==0 else x for x in values]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "MQ131_Nox =zero_to_nan(MQ131_Nox)\n", "MQ131_CL2 =zero_to_nan(MQ131_CL2)\n", "MQ131_O3 =zero_to_nan(MQ131_O3)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.datasets import load_iris\n", "#from sklearn.cross_validation import train_test_split\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn import datasets\n", "from sklearn import linear_model\n", "\n", "dataNox = {'RsRo': x_MQ131, 'Nox': MQ131_Nox}\n", "dataCL2 = {'RsRo': x_MQ131, 'CL2': MQ131_CL2}\n", "dataO3 = {'RsRo': x_MQ131, 'O3': MQ131_O3}\n", "\n", "dfMQ131_Nox = pd.DataFrame(dataNox)\n", "dfMQ131_CL2 = pd.DataFrame(dataCL2)\n", "dfMQ131_O3 = pd.DataFrame(dataO3)\n", "\n", "dfMQ131_Nox['Nox'] = pd.to_numeric(dfMQ131_Nox['Nox'])\n", "dfMQ131_CL2['CL2'] = pd.to_numeric(dfMQ131_CL2['CL2'])\n", "dfMQ131_O3['O3'] = pd.to_numeric(dfMQ131_O3['O3'])\n", "\n", "dfMQ131_Nox['Nox'] = dfMQ131_Nox['Nox'].replace('',None, regex=True)\n", "dfMQ131_CL2['CL2'] = dfMQ131_CL2['CL2'].replace('',None, regex=True)\n", "dfMQ131_O3['O3'] = dfMQ131_O3['O3'].replace('',None, regex=True)\n", "\n", "#Global X_Predict variable\n", "X_Predict = dfMQ131_Nox.RsRo.apply(lambda x: [x]).tolist()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "#Model and train Nox\n", "dataset2TrainNox = dfMQ131_Nox.copy()\n", "dataset2TrainNox.dropna(inplace=True)\n", "X_trainNox = dataset2TrainNox.RsRo.apply(lambda x: [x]).tolist()\n", "y_trainNox = dataset2TrainNox['Nox'].tolist()\n", "model = linear_model.Lasso(alpha=0.1)\n", "model.fit(X_trainNox, y_trainNox)\n", "#Predict\n", "Nox_Predicted = model.predict(X_Predict)\n", "#save into MQ2\n", "MQ131_Nox = Nox_Predicted" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "#Model and train CL2\n", "dataset2TrainCL2 = dfMQ131_CL2.copy()\n", "dataset2TrainCL2.dropna(inplace=True)\n", "X_trainCL2 = dataset2TrainCL2.RsRo.apply(lambda x: [x]).tolist()\n", "y_trainCL2 = dataset2TrainCL2['CL2'].tolist()\n", "model = linear_model.Lasso(alpha=0.1)\n", "model.fit(X_trainCL2, y_trainCL2)\n", "#Predict\n", "CL2_Predicted = model.predict(X_Predict)\n", "#save into MQ2\n", "MQ131_CL2 = CL2_Predicted" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "#Model and train O3\n", "dataset2TrainO3 = dfMQ131_O3.copy()\n", "dataset2TrainO3.dropna(inplace=True)\n", "X_trainO3 = dataset2TrainO3.RsRo.apply(lambda x: [x]).tolist()\n", "y_trainO3 = dataset2TrainO3['O3'].tolist()\n", "model = linear_model.Lasso(alpha=0.1)\n", "model.fit(X_trainO3, y_trainO3)\n", "#Predict\n", "O3_Predicted = model.predict(X_Predict)\n", "#save into MQ2\n", "MQ131_O3 = O3_Predicted" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\r\n", "\r\n", "\r\n", "\r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", " \r\n", "\r\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%config InlineBackend.figure_formats = ['svg']\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import matplotlib.lines as mlines\n", "import matplotlib.transforms as mtransforms\n", "\n", "fig, ax = plt.subplots()\n", "\n", "fig.set_size_inches(9, 5.5, forward=True)\n", "fig.set_dpi(200)\n", "\n", "# only these two lines are calibration curves\n", "plt.plot(MQ131_Nox, x_MQ131, marker='o', linewidth=1, label='Nox')\n", "plt.plot(MQ131_CL2, x_MQ131, marker='o', linewidth=1, label='CL2')\n", "plt.plot(MQ131_O3, x_MQ131, marker='o', linewidth=1, label='O3')\n", "\n", "\n", "# reference line, legends, and axis labels\n", "#line = mlines.Line2D([0, 1], [0, 1], color='black')\n", "#transform = ax.transAxes\n", "#line.set_transform(transform)\n", "#ax.add_line(line)\n", "plt.yscale('log')\n", "plt.xscale('log')\n", "plt.legend()\n", "\n", "plt.grid(b=True, which='minor', color='lightgrey', linestyle='--')\n", "\n", "fig.suptitle('Calibration plot for MQ-131 data')\n", "ax.set_xlabel('PPM Concentration')\n", "ax.set_ylabel('Rs/Ro')\n", "\n", "\n", "#Save image\n", "plt.savefig('MQ131.svg', format = 'svg', dpi = 1200)\n", "plt.savefig('MQ131.png')\n", "plt.savefig('MQ131.eps', format = 'eps', dpi = 1200)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }