//Include the library #include // Wiring NOT required, only an arduino or esp8266 board /* This program was made to test the algorithm that from the ratio obtains the PPM (The core of this library), regardless of the plate in which the result is executed should give a small error (ideally less than 5%), is our way of self-evaluation, we tell the library what is the value of the ratio and ask him to calculate the PPM and compare it against the value that should really give, these values were taken from the same datasheet with which the library was made. */ //Include the library #include /************************Hardware Related Macros************************************/ #define Board ("Arduino UNO") #define Pin (A3) //Analog input 3 of your arduino /***********************Software Related Macros************************************/ #define Type ("MQ-3") //MQ3 #define Voltage_Resolution (5) #define ADC_Bit_Resolution (10) // For arduino UNO/MEGA/NANO //Declare Sensor MQUnifiedsensor mySensor(Board, Voltage_Resolution, ADC_Bit_Resolution, Pin, Type); /*****************************Globals***********************************************/ double ratio[4] = {}; double expectedValue[4] = {}; double calculatedValues[4] = {}; double error[4] = {}; /**************************Object_Sensor********************************************/ void setup() { //Init serial port Serial.begin(9600); //init the sensor mySensor.init(); //Print in serial monitor Serial.println("MQ2 to MQ9 - test program"); } void loop() { // Testing MQ2 LPG ratio[0] = 1.8; ratio[1] = 1.05; ratio[2] = 0.8; ratio[3] = 0.5; expectedValue[0] = 200; expectedValue[1] = 500; expectedValue[2] = 1000; expectedValue[3] = 3000; testSensor("MQ-2", 574.25, -2.222); // Testing MQ3 Benzene ratio[0] = 4; ratio[1] = 3; ratio[2] = 1; ratio[3] = 0.8; expectedValue[0] = 0.1; expectedValue[1] = 0.21; expectedValue[2] = 4; expectedValue[3] = 10; testSensor("MQ-3", 4.8387, -2.68); // Testing MQ4 CH4 ratio[0] = 1.9; ratio[1] = 1; ratio[2] = 0.6; ratio[3] = 0.42; expectedValue[0] = 200; expectedValue[1] = 1000; expectedValue[2] = 5000; expectedValue[3] = 10000; testSensor("MQ-4", 1012.7, -2.786); // Testing MQ5 H2 ratio[0] = 1.8; ratio[1] = 1.3; ratio[2] = 0.8; ratio[3] = 0.68; expectedValue[0] = 200; expectedValue[1] = 500; expectedValue[2] = 3000; expectedValue[3] = 10000; testSensor("MQ-5", 1163.8, -3.874); // Testing MQ6 CH4 ratio[0] = 2.6; ratio[1] = 1.9; ratio[2] = 1; ratio[3] = 0.8; expectedValue[0] = 200; expectedValue[1] = 500; expectedValue[2] = 2000; expectedValue[3] = 5000; testSensor("MQ-6", 2127.2, -2.526); // Testing MQ7 CO ratio[0] = 1.8; ratio[1] = 1; ratio[2] = 0.4; ratio[3] = 0.25; expectedValue[0] = 50; expectedValue[1] = 100; expectedValue[2] = 400; expectedValue[3] = 1000; testSensor("MQ-7", 99.042, -1.518); // Testing MQ8 H2 ratio[0] = 2.6; ratio[1] = 1; ratio[2] = 0.21; ratio[3] = 0.03; expectedValue[0] = 500; expectedValue[1] = 1000; expectedValue[2] = 3000; expectedValue[3] = 10000; testSensor("MQ-8", 976.97, -0.688); // Testing MQ9 LPG ratio[0] = 2; ratio[1] = 1.4; ratio[2] = 0.7; ratio[3] = 0.23; expectedValue[0] = 200; expectedValue[1] = 500; expectedValue[2] = 2000; expectedValue[3] = 10000; testSensor("MQ-9", 1000.5, -2.186); // Testing MQ131 O3 ratio[0] = 5; ratio[1] = 2; ratio[2] = 0.7; ratio[3] = 0.5; expectedValue[0] = 5; expectedValue[1] = 20; expectedValue[2] = 70; expectedValue[3] = 100; testSensor("MQ-131", 23.943, -1.11); // Testing MQ135 NH4 ratio[0] = 2.6; ratio[1] = 1.9; ratio[2] = 1.1; ratio[3] = 0.75; expectedValue[0] = 10; expectedValue[1] = 20; expectedValue[2] = 100; expectedValue[3] = 200; testSensor("MQ-135", 102.2, -2.473); // Testing MQ303 Isobutano ratio[0] = 0.4; ratio[1] = 0.3; ratio[2] = 0.19; ratio[3] = 0.08; expectedValue[0] = 100; expectedValue[1] = 300; expectedValue[2] = 1000; expectedValue[3] = 10000; testSensor("MQ-303", 6.2144, -2.894); // Testing MQ309 CO ratio[0] = 6; ratio[1] = 5; ratio[2] = 4.3; ratio[3] = 4; expectedValue[0] = 1000; expectedValue[1] = 3000; expectedValue[2] = 5000; expectedValue[3] = 7000; testSensor("MQ-309", 1000000, -4.01); // Testing linear equation for MQ-4 mySensor.setRegressionMethod(0); //_PPM = pow(10, (log10(ratio)-b)/a) ratio[0] = 2.5; ratio[1] = 1.5; ratio[2] = 0.9; ratio[3] = 0.65; expectedValue[0] = 200; expectedValue[1] = 1000; expectedValue[2] = 5000; expectedValue[3] = 10000; testSensor("MQ-4", -0.318, 1.133); while(1); } void testSensor(String SensorName, float A, float B) { mySensor.setA(A); mySensor.setB(B); calculatedValues[0] = mySensor.validateEcuation(ratio[0]); calculatedValues[1] = mySensor.validateEcuation(ratio[1]); calculatedValues[2] = mySensor.validateEcuation(ratio[2]); calculatedValues[3] = mySensor.validateEcuation(ratio[3]); error[0] = calculatePercentualError(expectedValue[0], calculatedValues[0]); error[1] = calculatePercentualError(expectedValue[1], calculatedValues[1]); error[2] = calculatePercentualError(expectedValue[2], calculatedValues[2]); error[3] = calculatePercentualError(expectedValue[3], calculatedValues[3]); Serial.print("Error(%) "); Serial.print(SensorName); Serial.print(": "); Serial.print(error[0]); Serial.print(" "); Serial.print(error[1]); Serial.print(" "); Serial.print(error[2]); Serial.print(" "); Serial.print(error[3]); Serial.print(" | Calculated(PPM): "); Serial.print(calculatedValues[0]); Serial.print(" "); Serial.print(calculatedValues[1]); Serial.print(" "); Serial.print(calculatedValues[2]); Serial.print(" "); Serial.print(calculatedValues[3]); Serial.print(" | Expected(PPM): "); Serial.print(expectedValue[0]); Serial.print(" "); Serial.print(expectedValue[1]); Serial.print(" "); Serial.print(expectedValue[2]); Serial.print(" "); Serial.print(expectedValue[3]); Serial.println(" | "); } double calculatePercentualError(double expectedValue, double calculatedValue) { // Return the diference between two measures return abs(calculatedValue-expectedValue)/expectedValue; }