mirror of
https://github.com/johncobb/avr_328p_freertos.git
synced 2025-07-08 16:11:03 +03:00
added support for lwip
This commit is contained in:
895
lwip/netif/exclude/etharp.c
Normal file
895
lwip/netif/exclude/etharp.c
Normal file
@ -0,0 +1,895 @@
|
||||
/**
|
||||
* @file
|
||||
* Address Resolution Protocol module for IP over Ethernet
|
||||
*
|
||||
* Functionally, ARP is divided into two parts. The first maps an IP address
|
||||
* to a physical address when sending a packet, and the second part answers
|
||||
* requests from other machines for our physical address.
|
||||
*
|
||||
* This implementation complies with RFC 826 (Ethernet ARP). It supports
|
||||
* Gratuitious ARP from RFC3220 (IP Mobility Support for IPv4) section 4.6
|
||||
* if an interface calls etharp_query(our_netif, its_ip_addr, NULL) upon
|
||||
* address change.
|
||||
*/
|
||||
|
||||
#ifdef EXCLUDE
|
||||
/*
|
||||
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
|
||||
* Copyright (c) 2003-2004 Leon Woestenberg <leon.woestenberg@axon.tv>
|
||||
* Copyright (c) 2003-2004 Axon Digital Design B.V., The Netherlands.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* 3. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
||||
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
||||
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||||
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||||
* OF SUCH DAMAGE.
|
||||
*
|
||||
* This file is part of the lwIP TCP/IP stack.
|
||||
*
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "lwip/opt.h"
|
||||
#include "lwip/inet.h"
|
||||
#include "netif/etharp.h"
|
||||
#include "lwip/ip.h"
|
||||
#include "lwip/stats.h"
|
||||
#include "lwip/snmp.h"
|
||||
|
||||
/* ARP needs to inform DHCP of any ARP replies? */
|
||||
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
||||
# include "lwip/dhcp.h"
|
||||
#endif
|
||||
|
||||
/** the time an ARP entry stays valid after its last update,
|
||||
* (240 * 5) seconds = 20 minutes.
|
||||
*/
|
||||
#define ARP_MAXAGE 240
|
||||
/** the time an ARP entry stays pending after first request,
|
||||
* (2 * 5) seconds = 10 seconds.
|
||||
*
|
||||
* @internal Keep this number at least 2, otherwise it might
|
||||
* run out instantly if the timeout occurs directly after a request.
|
||||
*/
|
||||
#define ARP_MAXPENDING 2
|
||||
|
||||
#define HWTYPE_ETHERNET 1
|
||||
|
||||
/** ARP message types */
|
||||
#define ARP_REQUEST 1
|
||||
#define ARP_REPLY 2
|
||||
|
||||
#define ARPH_HWLEN(hdr) (ntohs((hdr)->_hwlen_protolen) >> 8)
|
||||
#define ARPH_PROTOLEN(hdr) (ntohs((hdr)->_hwlen_protolen) & 0xff)
|
||||
|
||||
#define ARPH_HWLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons(ARPH_PROTOLEN(hdr) | ((len) << 8))
|
||||
#define ARPH_PROTOLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons((len) | (ARPH_HWLEN(hdr) << 8))
|
||||
|
||||
enum etharp_state {
|
||||
ETHARP_STATE_EMPTY,
|
||||
ETHARP_STATE_PENDING,
|
||||
ETHARP_STATE_STABLE,
|
||||
/** @internal transitional state used in etharp_tmr() for convenience*/
|
||||
ETHARP_STATE_EXPIRED
|
||||
};
|
||||
|
||||
struct etharp_entry {
|
||||
#if ARP_QUEUEING
|
||||
/**
|
||||
* Pointer to queue of pending outgoing packets on this ARP entry.
|
||||
*/
|
||||
struct pbuf *p;
|
||||
#endif
|
||||
struct ip_addr ipaddr;
|
||||
struct eth_addr ethaddr;
|
||||
enum etharp_state state;
|
||||
u8_t ctime;
|
||||
struct netif *netif;
|
||||
};
|
||||
|
||||
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
||||
static struct etharp_entry arp_table[ARP_TABLE_SIZE];
|
||||
|
||||
/**
|
||||
* Try hard to create a new entry - we want the IP address to appear in
|
||||
* the cache (even if this means removing an active entry or so). */
|
||||
#define ETHARP_TRY_HARD 1
|
||||
|
||||
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags);
|
||||
static err_t update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags);
|
||||
/**
|
||||
* Initializes ARP module.
|
||||
*/
|
||||
void
|
||||
etharp_init(void)
|
||||
{
|
||||
u8_t i;
|
||||
/* clear ARP entries */
|
||||
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
|
||||
arp_table[i].state = ETHARP_STATE_EMPTY;
|
||||
#if ARP_QUEUEING
|
||||
arp_table[i].p = NULL;
|
||||
#endif
|
||||
arp_table[i].ctime = 0;
|
||||
arp_table[i].netif = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Clears expired entries in the ARP table.
|
||||
*
|
||||
* This function should be called every ETHARP_TMR_INTERVAL microseconds (5 seconds),
|
||||
* in order to expire entries in the ARP table.
|
||||
*/
|
||||
void
|
||||
etharp_tmr(void)
|
||||
{
|
||||
u8_t i;
|
||||
|
||||
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer\n"));
|
||||
/* remove expired entries from the ARP table */
|
||||
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
||||
arp_table[i].ctime++;
|
||||
/* stable entry? */
|
||||
if ((arp_table[i].state == ETHARP_STATE_STABLE) &&
|
||||
/* entry has become old? */
|
||||
(arp_table[i].ctime >= ARP_MAXAGE)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired stable entry %"U16_F".\n", (u16_t)i));
|
||||
arp_table[i].state = ETHARP_STATE_EXPIRED;
|
||||
/* pending entry? */
|
||||
} else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
||||
/* entry unresolved/pending for too long? */
|
||||
if (arp_table[i].ctime >= ARP_MAXPENDING) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired pending entry %"U16_F".\n", (u16_t)i));
|
||||
arp_table[i].state = ETHARP_STATE_EXPIRED;
|
||||
#if ARP_QUEUEING
|
||||
} else if (arp_table[i].p != NULL) {
|
||||
/* resend an ARP query here */
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/* clean up entries that have just been expired */
|
||||
if (arp_table[i].state == ETHARP_STATE_EXPIRED) {
|
||||
/* remove from SNMP ARP index tree */
|
||||
snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr);
|
||||
#if ARP_QUEUEING
|
||||
/* and empty packet queue */
|
||||
if (arp_table[i].p != NULL) {
|
||||
/* remove all queued packets */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: freeing entry %"U16_F", packet queue %p.\n", (u16_t)i, (void *)(arp_table[i].p)));
|
||||
pbuf_free(arp_table[i].p);
|
||||
arp_table[i].p = NULL;
|
||||
}
|
||||
#endif
|
||||
/* recycle entry for re-use */
|
||||
arp_table[i].state = ETHARP_STATE_EMPTY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Search the ARP table for a matching or new entry.
|
||||
*
|
||||
* If an IP address is given, return a pending or stable ARP entry that matches
|
||||
* the address. If no match is found, create a new entry with this address set,
|
||||
* but in state ETHARP_EMPTY. The caller must check and possibly change the
|
||||
* state of the returned entry.
|
||||
*
|
||||
* If ipaddr is NULL, return a initialized new entry in state ETHARP_EMPTY.
|
||||
*
|
||||
* In all cases, attempt to create new entries from an empty entry. If no
|
||||
* empty entries are available and ETHARP_TRY_HARD flag is set, recycle
|
||||
* old entries. Heuristic choose the least important entry for recycling.
|
||||
*
|
||||
* @param ipaddr IP address to find in ARP cache, or to add if not found.
|
||||
* @param flags
|
||||
* - ETHARP_TRY_HARD: Try hard to create a entry by allowing recycling of
|
||||
* active (stable or pending) entries.
|
||||
*
|
||||
* @return The ARP entry index that matched or is created, ERR_MEM if no
|
||||
* entry is found or could be recycled.
|
||||
*/
|
||||
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags)
|
||||
{
|
||||
s8_t old_pending = ARP_TABLE_SIZE, old_stable = ARP_TABLE_SIZE;
|
||||
s8_t empty = ARP_TABLE_SIZE;
|
||||
u8_t i = 0, age_pending = 0, age_stable = 0;
|
||||
#if ARP_QUEUEING
|
||||
/* oldest entry with packets on queue */
|
||||
s8_t old_queue = ARP_TABLE_SIZE;
|
||||
/* its age */
|
||||
u8_t age_queue = 0;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* a) do a search through the cache, remember candidates
|
||||
* b) select candidate entry
|
||||
* c) create new entry
|
||||
*/
|
||||
|
||||
/* a) in a single search sweep, do all of this
|
||||
* 1) remember the first empty entry (if any)
|
||||
* 2) remember the oldest stable entry (if any)
|
||||
* 3) remember the oldest pending entry without queued packets (if any)
|
||||
* 4) remember the oldest pending entry with queued packets (if any)
|
||||
* 5) search for a matching IP entry, either pending or stable
|
||||
* until 5 matches, or all entries are searched for.
|
||||
*/
|
||||
|
||||
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
||||
/* no empty entry found yet and now we do find one? */
|
||||
if ((empty == ARP_TABLE_SIZE) && (arp_table[i].state == ETHARP_STATE_EMPTY)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG, ("find_entry: found empty entry %"U16_F"\n", (u16_t)i));
|
||||
/* remember first empty entry */
|
||||
empty = i;
|
||||
}
|
||||
/* pending entry? */
|
||||
else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
||||
/* if given, does IP address match IP address in ARP entry? */
|
||||
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: found matching pending entry %"U16_F"\n", (u16_t)i));
|
||||
/* found exact IP address match, simply bail out */
|
||||
return i;
|
||||
#if ARP_QUEUEING
|
||||
/* pending with queued packets? */
|
||||
} else if (arp_table[i].p != NULL) {
|
||||
if (arp_table[i].ctime >= age_queue) {
|
||||
old_queue = i;
|
||||
age_queue = arp_table[i].ctime;
|
||||
}
|
||||
#endif
|
||||
/* pending without queued packets? */
|
||||
} else {
|
||||
if (arp_table[i].ctime >= age_pending) {
|
||||
old_pending = i;
|
||||
age_pending = arp_table[i].ctime;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* stable entry? */
|
||||
else if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
||||
/* if given, does IP address match IP address in ARP entry? */
|
||||
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: found matching stable entry %"U16_F"\n", (u16_t)i));
|
||||
/* found exact IP address match, simply bail out */
|
||||
return i;
|
||||
/* remember entry with oldest stable entry in oldest, its age in maxtime */
|
||||
} else if (arp_table[i].ctime >= age_stable) {
|
||||
old_stable = i;
|
||||
age_stable = arp_table[i].ctime;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* { we have no match } => try to create a new entry */
|
||||
|
||||
/* no empty entry found and not allowed to recycle? */
|
||||
if ((empty == ARP_TABLE_SIZE) && ((flags & ETHARP_TRY_HARD) == 0))
|
||||
{
|
||||
return (s8_t)ERR_MEM;
|
||||
}
|
||||
|
||||
/* b) choose the least destructive entry to recycle:
|
||||
* 1) empty entry
|
||||
* 2) oldest stable entry
|
||||
* 3) oldest pending entry without queued packets
|
||||
* 4) oldest pending entry without queued packets
|
||||
*
|
||||
* { ETHARP_TRY_HARD is set at this point }
|
||||
*/
|
||||
|
||||
/* 1) empty entry available? */
|
||||
if (empty < ARP_TABLE_SIZE) {
|
||||
i = empty;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting empty entry %"U16_F"\n", (u16_t)i));
|
||||
}
|
||||
/* 2) found recyclable stable entry? */
|
||||
else if (old_stable < ARP_TABLE_SIZE) {
|
||||
/* recycle oldest stable*/
|
||||
i = old_stable;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest stable entry %"U16_F"\n", (u16_t)i));
|
||||
#if ARP_QUEUEING
|
||||
/* no queued packets should exist on stable entries */
|
||||
LWIP_ASSERT("arp_table[i].p == NULL", arp_table[i].p == NULL);
|
||||
#endif
|
||||
/* 3) found recyclable pending entry without queued packets? */
|
||||
} else if (old_pending < ARP_TABLE_SIZE) {
|
||||
/* recycle oldest pending */
|
||||
i = old_pending;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F" (without queue)\n", (u16_t)i));
|
||||
#if ARP_QUEUEING
|
||||
/* 4) found recyclable pending entry with queued packets? */
|
||||
} else if (old_queue < ARP_TABLE_SIZE) {
|
||||
/* recycle oldest pending */
|
||||
i = old_queue;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F", freeing packet queue %p\n", (u16_t)i, (void *)(arp_table[i].p)));
|
||||
pbuf_free(arp_table[i].p);
|
||||
arp_table[i].p = NULL;
|
||||
#endif
|
||||
/* no empty or recyclable entries found */
|
||||
} else {
|
||||
return (s8_t)ERR_MEM;
|
||||
}
|
||||
|
||||
/* { empty or recyclable entry found } */
|
||||
LWIP_ASSERT("i < ARP_TABLE_SIZE", i < ARP_TABLE_SIZE);
|
||||
|
||||
if (arp_table[i].state != ETHARP_STATE_EMPTY)
|
||||
{
|
||||
snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr);
|
||||
}
|
||||
/* recycle entry (no-op for an already empty entry) */
|
||||
arp_table[i].state = ETHARP_STATE_EMPTY;
|
||||
|
||||
/* IP address given? */
|
||||
if (ipaddr != NULL) {
|
||||
/* set IP address */
|
||||
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
|
||||
}
|
||||
arp_table[i].ctime = 0;
|
||||
return (err_t)i;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update (or insert) a IP/MAC address pair in the ARP cache.
|
||||
*
|
||||
* If a pending entry is resolved, any queued packets will be sent
|
||||
* at this point.
|
||||
*
|
||||
* @param ipaddr IP address of the inserted ARP entry.
|
||||
* @param ethaddr Ethernet address of the inserted ARP entry.
|
||||
* @param flags Defines behaviour:
|
||||
* - ETHARP_TRY_HARD Allows ARP to insert this as a new item. If not specified,
|
||||
* only existing ARP entries will be updated.
|
||||
*
|
||||
* @return
|
||||
* - ERR_OK Succesfully updated ARP cache.
|
||||
* - ERR_MEM If we could not add a new ARP entry when ETHARP_TRY_HARD was set.
|
||||
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
||||
*
|
||||
* @see pbuf_free()
|
||||
*/
|
||||
static err_t
|
||||
update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags)
|
||||
{
|
||||
s8_t i;
|
||||
u8_t k;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 3, ("update_arp_entry()\n"));
|
||||
LWIP_ASSERT("netif->hwaddr_len != 0", netif->hwaddr_len != 0);
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: %"U16_F".%"U16_F".%"U16_F".%"U16_F" - %02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F"\n",
|
||||
ip4_addr1(ipaddr), ip4_addr2(ipaddr), ip4_addr3(ipaddr), ip4_addr4(ipaddr),
|
||||
ethaddr->addr[0], ethaddr->addr[1], ethaddr->addr[2],
|
||||
ethaddr->addr[3], ethaddr->addr[4], ethaddr->addr[5]));
|
||||
/* non-unicast address? */
|
||||
if (ip_addr_isany(ipaddr) ||
|
||||
ip_addr_isbroadcast(ipaddr, netif) ||
|
||||
ip_addr_ismulticast(ipaddr)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: will not add non-unicast IP address to ARP cache\n"));
|
||||
return ERR_ARG;
|
||||
}
|
||||
/* find or create ARP entry */
|
||||
i = find_entry(ipaddr, flags);
|
||||
/* bail out if no entry could be found */
|
||||
if (i < 0) return (err_t)i;
|
||||
|
||||
/* mark it stable */
|
||||
arp_table[i].state = ETHARP_STATE_STABLE;
|
||||
/* record network interface */
|
||||
arp_table[i].netif = netif;
|
||||
|
||||
/* insert in SNMP ARP index tree */
|
||||
snmp_insert_arpidx_tree(netif, &arp_table[i].ipaddr);
|
||||
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: updating stable entry %"S16_F"\n", (s16_t)i));
|
||||
/* update address */
|
||||
k = netif->hwaddr_len;
|
||||
while (k > 0) {
|
||||
k--;
|
||||
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
|
||||
}
|
||||
/* reset time stamp */
|
||||
arp_table[i].ctime = 0;
|
||||
/* this is where we will send out queued packets! */
|
||||
#if ARP_QUEUEING
|
||||
while (arp_table[i].p != NULL) {
|
||||
/* get the first packet on the queue */
|
||||
struct pbuf *p = arp_table[i].p;
|
||||
/* Ethernet header */
|
||||
struct eth_hdr *ethhdr = p->payload;
|
||||
/* remember (and reference) remainder of queue */
|
||||
/* note: this will also terminate the p pbuf chain */
|
||||
arp_table[i].p = pbuf_dequeue(p);
|
||||
/* fill-in Ethernet header */
|
||||
k = netif->hwaddr_len;
|
||||
while(k > 0) {
|
||||
k--;
|
||||
ethhdr->dest.addr[k] = ethaddr->addr[k];
|
||||
ethhdr->src.addr[k] = netif->hwaddr[k];
|
||||
}
|
||||
ethhdr->type = htons(ETHTYPE_IP);
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("update_arp_entry: sending queued IP packet %p.\n", (void *)p));
|
||||
/* send the queued IP packet */
|
||||
netif->linkoutput(netif, p);
|
||||
/* free the queued IP packet */
|
||||
pbuf_free(p);
|
||||
}
|
||||
#endif
|
||||
return ERR_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds (stable) ethernet/IP address pair from ARP table
|
||||
* using interface and IP address index.
|
||||
* @note the addresses in the ARP table are in network order!
|
||||
*
|
||||
* @param netif points to interface index
|
||||
* @param ipaddr points to the (network order) IP address index
|
||||
* @param eth_ret points to return pointer
|
||||
* @param ip_ret points to return pointer
|
||||
* @return table index if found, -1 otherwise
|
||||
*/
|
||||
s8_t
|
||||
etharp_find_addr(struct netif *netif, struct ip_addr *ipaddr,
|
||||
struct eth_addr **eth_ret, struct ip_addr **ip_ret)
|
||||
{
|
||||
s8_t i;
|
||||
|
||||
i = 0;
|
||||
while (i < ARP_TABLE_SIZE)
|
||||
{
|
||||
if ((arp_table[i].state == ETHARP_STATE_STABLE) &&
|
||||
(arp_table[i].netif == netif) &&
|
||||
ip_addr_cmp(ipaddr, &arp_table[i].ipaddr) )
|
||||
{
|
||||
*eth_ret = &arp_table[i].ethaddr;
|
||||
*ip_ret = &arp_table[i].ipaddr;
|
||||
return i;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the ARP table using the given IP packet.
|
||||
*
|
||||
* Uses the incoming IP packet's source address to update the
|
||||
* ARP cache for the local network. The function does not alter
|
||||
* or free the packet. This function must be called before the
|
||||
* packet p is passed to the IP layer.
|
||||
*
|
||||
* @param netif The lwIP network interface on which the IP packet pbuf arrived.
|
||||
* @param pbuf The IP packet that arrived on netif.
|
||||
*
|
||||
* @return NULL
|
||||
*
|
||||
* @see pbuf_free()
|
||||
*/
|
||||
void
|
||||
etharp_ip_input(struct netif *netif, struct pbuf *p)
|
||||
{
|
||||
struct ethip_hdr *hdr;
|
||||
LWIP_ASSERT("netif != NULL", netif != NULL);
|
||||
/* Only insert an entry if the source IP address of the
|
||||
incoming IP packet comes from a host on the local network. */
|
||||
hdr = p->payload;
|
||||
/* source is not on the local network? */
|
||||
if (!ip_addr_netcmp(&(hdr->ip.src), &(netif->ip_addr), &(netif->netmask))) {
|
||||
/* do nothing */
|
||||
return;
|
||||
}
|
||||
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_ip_input: updating ETHARP table.\n"));
|
||||
/* update ARP table */
|
||||
/* @todo We could use ETHARP_TRY_HARD if we think we are going to talk
|
||||
* back soon (for example, if the destination IP address is ours. */
|
||||
update_arp_entry(netif, &(hdr->ip.src), &(hdr->eth.src), 0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Responds to ARP requests to us. Upon ARP replies to us, add entry to cache
|
||||
* send out queued IP packets. Updates cache with snooped address pairs.
|
||||
*
|
||||
* Should be called for incoming ARP packets. The pbuf in the argument
|
||||
* is freed by this function.
|
||||
*
|
||||
* @param netif The lwIP network interface on which the ARP packet pbuf arrived.
|
||||
* @param pbuf The ARP packet that arrived on netif. Is freed by this function.
|
||||
* @param ethaddr Ethernet address of netif.
|
||||
*
|
||||
* @return NULL
|
||||
*
|
||||
* @see pbuf_free()
|
||||
*/
|
||||
void
|
||||
etharp_arp_input(struct netif *netif, struct eth_addr *ethaddr, struct pbuf *p)
|
||||
{
|
||||
struct etharp_hdr *hdr;
|
||||
/* these are aligned properly, whereas the ARP header fields might not be */
|
||||
struct ip_addr sipaddr, dipaddr;
|
||||
u8_t i;
|
||||
u8_t for_us;
|
||||
|
||||
LWIP_ASSERT("netif != NULL", netif != NULL);
|
||||
|
||||
/* drop short ARP packets */
|
||||
if (p->tot_len < sizeof(struct etharp_hdr)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 1, ("etharp_arp_input: packet dropped, too short (%"S16_F"/%"S16_F")\n", p->tot_len, (s16_t)sizeof(struct etharp_hdr)));
|
||||
pbuf_free(p);
|
||||
return;
|
||||
}
|
||||
|
||||
hdr = p->payload;
|
||||
|
||||
/* Copy struct ip_addr2 to aligned ip_addr, to support compilers without
|
||||
* structure packing (not using structure copy which breaks strict-aliasing rules). */
|
||||
memcpy(&sipaddr, &hdr->sipaddr, sizeof(sipaddr));
|
||||
memcpy(&dipaddr, &hdr->dipaddr, sizeof(dipaddr));
|
||||
|
||||
/* this interface is not configured? */
|
||||
if (netif->ip_addr.addr == 0) {
|
||||
for_us = 0;
|
||||
} else {
|
||||
/* ARP packet directed to us? */
|
||||
for_us = ip_addr_cmp(&dipaddr, &(netif->ip_addr));
|
||||
}
|
||||
|
||||
/* ARP message directed to us? */
|
||||
if (for_us) {
|
||||
/* add IP address in ARP cache; assume requester wants to talk to us.
|
||||
* can result in directly sending the queued packets for this host. */
|
||||
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), ETHARP_TRY_HARD);
|
||||
/* ARP message not directed to us? */
|
||||
} else {
|
||||
/* update the source IP address in the cache, if present */
|
||||
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), 0);
|
||||
}
|
||||
|
||||
/* now act on the message itself */
|
||||
switch (htons(hdr->opcode)) {
|
||||
/* ARP request? */
|
||||
case ARP_REQUEST:
|
||||
/* ARP request. If it asked for our address, we send out a
|
||||
* reply. In any case, we time-stamp any existing ARP entry,
|
||||
* and possiby send out an IP packet that was queued on it. */
|
||||
|
||||
LWIP_DEBUGF (ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP request\n"));
|
||||
/* ARP request for our address? */
|
||||
if (for_us) {
|
||||
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: replying to ARP request for our IP address\n"));
|
||||
/* re-use pbuf to send ARP reply */
|
||||
hdr->opcode = htons(ARP_REPLY);
|
||||
|
||||
hdr->dipaddr = hdr->sipaddr;
|
||||
hdr->sipaddr = *(struct ip_addr2 *)&netif->ip_addr;
|
||||
|
||||
i = netif->hwaddr_len;
|
||||
while(i > 0) {
|
||||
i--;
|
||||
hdr->dhwaddr.addr[i] = hdr->shwaddr.addr[i];
|
||||
hdr->shwaddr.addr[i] = ethaddr->addr[i];
|
||||
hdr->ethhdr.dest.addr[i] = hdr->dhwaddr.addr[i];
|
||||
hdr->ethhdr.src.addr[i] = ethaddr->addr[i];
|
||||
}
|
||||
|
||||
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
||||
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
||||
|
||||
hdr->proto = htons(ETHTYPE_IP);
|
||||
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
||||
|
||||
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
||||
/* return ARP reply */
|
||||
netif->linkoutput(netif, p);
|
||||
/* we are not configured? */
|
||||
} else if (netif->ip_addr.addr == 0) {
|
||||
/* { for_us == 0 and netif->ip_addr.addr == 0 } */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: we are unconfigured, ARP request ignored.\n"));
|
||||
/* request was not directed to us */
|
||||
} else {
|
||||
/* { for_us == 0 and netif->ip_addr.addr != 0 } */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: ARP request was not for us.\n"));
|
||||
}
|
||||
break;
|
||||
case ARP_REPLY:
|
||||
/* ARP reply. We already updated the ARP cache earlier. */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: incoming ARP reply\n"));
|
||||
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
||||
/* DHCP wants to know about ARP replies from any host with an
|
||||
* IP address also offered to us by the DHCP server. We do not
|
||||
* want to take a duplicate IP address on a single network.
|
||||
* @todo How should we handle redundant (fail-over) interfaces?
|
||||
* */
|
||||
dhcp_arp_reply(netif, &sipaddr);
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_arp_input: ARP unknown opcode type %"S16_F"\n", htons(hdr->opcode)));
|
||||
break;
|
||||
}
|
||||
/* free ARP packet */
|
||||
pbuf_free(p);
|
||||
}
|
||||
|
||||
/**
|
||||
* Resolve and fill-in Ethernet address header for outgoing packet.
|
||||
*
|
||||
* For IP multicast and broadcast, corresponding Ethernet addresses
|
||||
* are selected and the packet is transmitted on the link.
|
||||
*
|
||||
* For unicast addresses, the packet is submitted to etharp_query(). In
|
||||
* case the IP address is outside the local network, the IP address of
|
||||
* the gateway is used.
|
||||
*
|
||||
* @param netif The lwIP network interface which the IP packet will be sent on.
|
||||
* @param ipaddr The IP address of the packet destination.
|
||||
* @param pbuf The pbuf(s) containing the IP packet to be sent.
|
||||
*
|
||||
* @return
|
||||
* - ERR_RTE No route to destination (no gateway to external networks),
|
||||
* or the return type of either etharp_query() or netif->linkoutput().
|
||||
*/
|
||||
err_t
|
||||
etharp_output(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
||||
{
|
||||
struct eth_addr *dest, *srcaddr, mcastaddr;
|
||||
struct eth_hdr *ethhdr;
|
||||
u8_t i;
|
||||
|
||||
/* make room for Ethernet header - should not fail */
|
||||
if (pbuf_header(q, sizeof(struct eth_hdr)) != 0) {
|
||||
/* bail out */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_output: could not allocate room for header.\n"));
|
||||
LINK_STATS_INC(link.lenerr);
|
||||
return ERR_BUF;
|
||||
}
|
||||
|
||||
/* assume unresolved Ethernet address */
|
||||
dest = NULL;
|
||||
/* Determine on destination hardware address. Broadcasts and multicasts
|
||||
* are special, other IP addresses are looked up in the ARP table. */
|
||||
|
||||
/* broadcast destination IP address? */
|
||||
if (ip_addr_isbroadcast(ipaddr, netif)) {
|
||||
/* broadcast on Ethernet also */
|
||||
dest = (struct eth_addr *)ðbroadcast;
|
||||
/* multicast destination IP address? */
|
||||
} else if (ip_addr_ismulticast(ipaddr)) {
|
||||
/* Hash IP multicast address to MAC address.*/
|
||||
mcastaddr.addr[0] = 0x01;
|
||||
mcastaddr.addr[1] = 0x00;
|
||||
mcastaddr.addr[2] = 0x5e;
|
||||
mcastaddr.addr[3] = ip4_addr2(ipaddr) & 0x7f;
|
||||
mcastaddr.addr[4] = ip4_addr3(ipaddr);
|
||||
mcastaddr.addr[5] = ip4_addr4(ipaddr);
|
||||
/* destination Ethernet address is multicast */
|
||||
dest = &mcastaddr;
|
||||
/* unicast destination IP address? */
|
||||
} else {
|
||||
/* outside local network? */
|
||||
if (!ip_addr_netcmp(ipaddr, &(netif->ip_addr), &(netif->netmask))) {
|
||||
/* interface has default gateway? */
|
||||
if (netif->gw.addr != 0) {
|
||||
/* send to hardware address of default gateway IP address */
|
||||
ipaddr = &(netif->gw);
|
||||
/* no default gateway available */
|
||||
} else {
|
||||
/* no route to destination error (default gateway missing) */
|
||||
return ERR_RTE;
|
||||
}
|
||||
}
|
||||
/* queue on destination Ethernet address belonging to ipaddr */
|
||||
return etharp_query(netif, ipaddr, q);
|
||||
}
|
||||
|
||||
/* continuation for multicast/broadcast destinations */
|
||||
/* obtain source Ethernet address of the given interface */
|
||||
srcaddr = (struct eth_addr *)netif->hwaddr;
|
||||
ethhdr = q->payload;
|
||||
i = netif->hwaddr_len;
|
||||
while(i > 0) {
|
||||
i--;
|
||||
ethhdr->dest.addr[i] = dest->addr[i];
|
||||
ethhdr->src.addr[i] = srcaddr->addr[i];
|
||||
}
|
||||
ethhdr->type = htons(ETHTYPE_IP);
|
||||
/* send packet directly on the link */
|
||||
return netif->linkoutput(netif, q);
|
||||
}
|
||||
|
||||
/**
|
||||
* Send an ARP request for the given IP address and/or queue a packet.
|
||||
*
|
||||
* If the IP address was not yet in the cache, a pending ARP cache entry
|
||||
* is added and an ARP request is sent for the given address. The packet
|
||||
* is queued on this entry.
|
||||
*
|
||||
* If the IP address was already pending in the cache, a new ARP request
|
||||
* is sent for the given address. The packet is queued on this entry.
|
||||
*
|
||||
* If the IP address was already stable in the cache, and a packet is
|
||||
* given, it is directly sent and no ARP request is sent out.
|
||||
*
|
||||
* If the IP address was already stable in the cache, and no packet is
|
||||
* given, an ARP request is sent out.
|
||||
*
|
||||
* @param netif The lwIP network interface on which ipaddr
|
||||
* must be queried for.
|
||||
* @param ipaddr The IP address to be resolved.
|
||||
* @param q If non-NULL, a pbuf that must be delivered to the IP address.
|
||||
* q is not freed by this function.
|
||||
*
|
||||
* @return
|
||||
* - ERR_BUF Could not make room for Ethernet header.
|
||||
* - ERR_MEM Hardware address unknown, and no more ARP entries available
|
||||
* to query for address or queue the packet.
|
||||
* - ERR_MEM Could not queue packet due to memory shortage.
|
||||
* - ERR_RTE No route to destination (no gateway to external networks).
|
||||
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
||||
*
|
||||
*/
|
||||
err_t etharp_query(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
||||
{
|
||||
struct eth_addr * srcaddr = (struct eth_addr *)netif->hwaddr;
|
||||
err_t result = ERR_MEM;
|
||||
s8_t i; /* ARP entry index */
|
||||
u8_t k; /* Ethernet address octet index */
|
||||
|
||||
/* non-unicast address? */
|
||||
if (ip_addr_isbroadcast(ipaddr, netif) ||
|
||||
ip_addr_ismulticast(ipaddr) ||
|
||||
ip_addr_isany(ipaddr)) {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: will not add non-unicast IP address to ARP cache\n"));
|
||||
return ERR_ARG;
|
||||
}
|
||||
|
||||
/* find entry in ARP cache, ask to create entry if queueing packet */
|
||||
i = find_entry(ipaddr, ETHARP_TRY_HARD);
|
||||
|
||||
/* could not find or create entry? */
|
||||
if (i < 0)
|
||||
{
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: could not create ARP entry\n"));
|
||||
if (q) LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: packet dropped\n"));
|
||||
return (err_t)i;
|
||||
}
|
||||
|
||||
/* mark a fresh entry as pending (we just sent a request) */
|
||||
if (arp_table[i].state == ETHARP_STATE_EMPTY) {
|
||||
arp_table[i].state = ETHARP_STATE_PENDING;
|
||||
}
|
||||
|
||||
/* { i is either a STABLE or (new or existing) PENDING entry } */
|
||||
LWIP_ASSERT("arp_table[i].state == PENDING or STABLE",
|
||||
((arp_table[i].state == ETHARP_STATE_PENDING) ||
|
||||
(arp_table[i].state == ETHARP_STATE_STABLE)));
|
||||
|
||||
/* do we have a pending entry? or an implicit query request? */
|
||||
if ((arp_table[i].state == ETHARP_STATE_PENDING) || (q == NULL)) {
|
||||
/* try to resolve it; send out ARP request */
|
||||
result = etharp_request(netif, ipaddr);
|
||||
}
|
||||
|
||||
/* packet given? */
|
||||
if (q != NULL) {
|
||||
/* stable entry? */
|
||||
if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
||||
/* we have a valid IP->Ethernet address mapping,
|
||||
* fill in the Ethernet header for the outgoing packet */
|
||||
struct eth_hdr *ethhdr = q->payload;
|
||||
k = netif->hwaddr_len;
|
||||
while(k > 0) {
|
||||
k--;
|
||||
ethhdr->dest.addr[k] = arp_table[i].ethaddr.addr[k];
|
||||
ethhdr->src.addr[k] = srcaddr->addr[k];
|
||||
}
|
||||
ethhdr->type = htons(ETHTYPE_IP);
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: sending packet %p\n", (void *)q));
|
||||
/* send the packet */
|
||||
result = netif->linkoutput(netif, q);
|
||||
/* pending entry? (either just created or already pending */
|
||||
} else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
||||
#if ARP_QUEUEING /* queue the given q packet */
|
||||
struct pbuf *p;
|
||||
/* copy any PBUF_REF referenced payloads into PBUF_RAM */
|
||||
/* (the caller of lwIP assumes the referenced payload can be
|
||||
* freed after it returns from the lwIP call that brought us here) */
|
||||
p = pbuf_take(q);
|
||||
/* packet could be taken over? */
|
||||
if (p != NULL) {
|
||||
/* queue packet ... */
|
||||
if (arp_table[i].p == NULL) {
|
||||
/* ... in the empty queue */
|
||||
pbuf_ref(p);
|
||||
arp_table[i].p = p;
|
||||
#if 0 /* multi-packet-queueing disabled, see bug #11400 */
|
||||
} else {
|
||||
/* ... at tail of non-empty queue */
|
||||
pbuf_queue(arp_table[i].p, p);
|
||||
#endif
|
||||
}
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: queued packet %p on ARP entry %"S16_F"\n", (void *)q, (s16_t)i));
|
||||
result = ERR_OK;
|
||||
} else {
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q));
|
||||
/* { result == ERR_MEM } through initialization */
|
||||
}
|
||||
#else /* ARP_QUEUEING == 0 */
|
||||
/* q && state == PENDING && ARP_QUEUEING == 0 => result = ERR_MEM */
|
||||
/* { result == ERR_MEM } through initialization */
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_query: Ethernet destination address unknown, queueing disabled, packet %p dropped\n", (void *)q));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
err_t etharp_request(struct netif *netif, struct ip_addr *ipaddr)
|
||||
{
|
||||
struct pbuf *p;
|
||||
struct eth_addr * srcaddr = (struct eth_addr *)netif->hwaddr;
|
||||
err_t result = ERR_OK;
|
||||
u8_t k; /* ARP entry index */
|
||||
|
||||
/* allocate a pbuf for the outgoing ARP request packet */
|
||||
p = pbuf_alloc(PBUF_LINK, sizeof(struct etharp_hdr), PBUF_RAM);
|
||||
/* could allocate a pbuf for an ARP request? */
|
||||
if (p != NULL) {
|
||||
struct etharp_hdr *hdr = p->payload;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE, ("etharp_request: sending ARP request.\n"));
|
||||
hdr->opcode = htons(ARP_REQUEST);
|
||||
k = netif->hwaddr_len;
|
||||
while(k > 0) {
|
||||
k--;
|
||||
hdr->shwaddr.addr[k] = srcaddr->addr[k];
|
||||
/* the hardware address is what we ask for, in
|
||||
* a request it is a don't-care value, we use zeroes */
|
||||
hdr->dhwaddr.addr[k] = 0x00;
|
||||
}
|
||||
hdr->dipaddr = *(struct ip_addr2 *)ipaddr;
|
||||
hdr->sipaddr = *(struct ip_addr2 *)&netif->ip_addr;
|
||||
|
||||
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
||||
ARPH_HWLEN_SET(hdr, netif->hwaddr_len);
|
||||
|
||||
hdr->proto = htons(ETHTYPE_IP);
|
||||
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
|
||||
k = netif->hwaddr_len;
|
||||
while(k > 0) {
|
||||
k--;
|
||||
/* broadcast to all network interfaces on the local network */
|
||||
hdr->ethhdr.dest.addr[k] = 0xff;
|
||||
hdr->ethhdr.src.addr[k] = srcaddr->addr[k];
|
||||
}
|
||||
hdr->ethhdr.type = htons(ETHTYPE_ARP);
|
||||
/* send ARP query */
|
||||
result = netif->linkoutput(netif, p);
|
||||
/* free ARP query packet */
|
||||
pbuf_free(p);
|
||||
p = NULL;
|
||||
/* could not allocate pbuf for ARP request */
|
||||
} else {
|
||||
result = ERR_MEM;
|
||||
LWIP_DEBUGF(ETHARP_DEBUG | DBG_TRACE | 2, ("etharp_request: could not allocate pbuf for ARP request.\n"));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif
|
332
lwip/netif/exclude/ethernetif.c
Normal file
332
lwip/netif/exclude/ethernetif.c
Normal file
@ -0,0 +1,332 @@
|
||||
/*
|
||||
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
* 3. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
||||
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
||||
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||||
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||||
* OF SUCH DAMAGE.
|
||||
*
|
||||
* This file is part of the lwIP TCP/IP stack.
|
||||
*
|
||||
* Author: Adam Dunkels <adam@sics.se>
|
||||
*
|
||||
*/
|
||||
|
||||
#ifdef EXCLUDE
|
||||
/*
|
||||
* This file is a skeleton for developing Ethernet network interface
|
||||
* drivers for lwIP. Add code to the low_level functions and do a
|
||||
* search-and-replace for the word "ethernetif" to replace it with
|
||||
* something that better describes your network interface.
|
||||
*/
|
||||
|
||||
#include "lwip/opt.h"
|
||||
#include "lwip/def.h"
|
||||
#include "lwip/mem.h"
|
||||
#include "lwip/pbuf.h"
|
||||
#include "lwip/sys.h"
|
||||
#include <lwip/stats.h>
|
||||
|
||||
#include "netif/etharp.h"
|
||||
|
||||
u8_t U8t_DUMMY_VARIABLE = 0;
|
||||
u16_t U16t_DUMMY_VARIABLE = 0;
|
||||
|
||||
/* Define those to better describe your network interface. */
|
||||
#define IFNAME0 'e'
|
||||
#define IFNAME1 'n'
|
||||
|
||||
struct ethernetif {
|
||||
struct eth_addr *ethaddr;
|
||||
/* Add whatever per-interface state that is needed here. */
|
||||
};
|
||||
|
||||
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
||||
|
||||
/* Forward declarations. */
|
||||
static void ethernetif_input(struct netif *netif);
|
||||
static err_t ethernetif_output(struct netif *netif, struct pbuf *p,
|
||||
struct ip_addr *ipaddr);
|
||||
|
||||
|
||||
|
||||
|
||||
static void low_level_init(struct netif *netif)
|
||||
{
|
||||
struct ethernetif *ethernetif = netif->state;
|
||||
|
||||
/* set MAC hardware address length */
|
||||
netif->hwaddr_len = 6;
|
||||
|
||||
/* set MAC hardware address */
|
||||
netif->hwaddr[0] = U8t_DUMMY_VARIABLE;
|
||||
|
||||
netif->hwaddr[5] = U8t_DUMMY_VARIABLE;
|
||||
|
||||
/* maximum transfer unit */
|
||||
netif->mtu = 1500;
|
||||
|
||||
/* broadcast capability */
|
||||
netif->flags = NETIF_FLAG_BROADCAST;
|
||||
|
||||
/* Do whatever else is needed to initialize interface. */
|
||||
}
|
||||
|
||||
/*
|
||||
* low_level_output():
|
||||
*
|
||||
* Should do the actual transmission of the packet. The packet is
|
||||
* contained in the pbuf that is passed to the function. This pbuf
|
||||
* might be chained.
|
||||
*
|
||||
*/
|
||||
|
||||
static err_t low_level_output(struct netif *netif, struct pbuf *p)
|
||||
{
|
||||
struct ethernetif *ethernetif = netif->state;
|
||||
struct pbuf *q;
|
||||
|
||||
//initiate transfer();
|
||||
|
||||
#if ETH_PAD_SIZE
|
||||
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
|
||||
#endif
|
||||
|
||||
for(q = p; q != NULL; q = q->next) {
|
||||
/* Send the data from the pbuf to the interface, one pbuf at a
|
||||
time. The size of the data in each pbuf is kept in the ->len
|
||||
variable. */
|
||||
//send data from(q->payload, q->len);
|
||||
}
|
||||
|
||||
//signal that packet should be sent();
|
||||
|
||||
#if ETH_PAD_SIZE
|
||||
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
|
||||
#endif
|
||||
|
||||
#if LINK_STATS
|
||||
lwip_stats.link.xmit++;
|
||||
#endif /* LINK_STATS */
|
||||
|
||||
return ERR_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* low_level_input():
|
||||
*
|
||||
* Should allocate a pbuf and transfer the bytes of the incoming
|
||||
* packet from the interface into the pbuf.
|
||||
*
|
||||
*/
|
||||
|
||||
static struct pbuf *
|
||||
low_level_input(struct netif *netif)
|
||||
{
|
||||
struct ethernetif *ethernetif = netif->state;
|
||||
struct pbuf *p, *q;
|
||||
u16_t len;
|
||||
|
||||
/* Obtain the size of the packet and put it into the "len"
|
||||
variable. */
|
||||
len = U16t_DUMMY_VARIABLE;
|
||||
|
||||
#if ETH_PAD_SIZE
|
||||
len += ETH_PAD_SIZE; /* allow room for Ethernet padding */
|
||||
#endif
|
||||
|
||||
/* We allocate a pbuf chain of pbufs from the pool. */
|
||||
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
|
||||
|
||||
if (p != NULL) {
|
||||
|
||||
#if ETH_PAD_SIZE
|
||||
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
|
||||
#endif
|
||||
|
||||
/* We iterate over the pbuf chain until we have read the entire
|
||||
* packet into the pbuf. */
|
||||
for(q = p; q != NULL; q = q->next) {
|
||||
/* Read enough bytes to fill this pbuf in the chain. The
|
||||
* available data in the pbuf is given by the q->len
|
||||
* variable. */
|
||||
//read data into(q->payload, q->len);
|
||||
}
|
||||
//acknowledge that packet has been read();
|
||||
|
||||
#if ETH_PAD_SIZE
|
||||
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
|
||||
#endif
|
||||
|
||||
#if LINK_STATS
|
||||
lwip_stats.link.recv++;
|
||||
#endif /* LINK_STATS */
|
||||
} else {
|
||||
//drop packet();
|
||||
#if LINK_STATS
|
||||
lwip_stats.link.memerr++;
|
||||
lwip_stats.link.drop++;
|
||||
#endif /* LINK_STATS */
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
* ethernetif_output():
|
||||
*
|
||||
* This function is called by the TCP/IP stack when an IP packet
|
||||
* should be sent. It calls the function called low_level_output() to
|
||||
* do the actual transmission of the packet.
|
||||
*
|
||||
*/
|
||||
|
||||
static err_t
|
||||
ethernetif_output(struct netif *netif, struct pbuf *p,
|
||||
struct ip_addr *ipaddr)
|
||||
{
|
||||
|
||||
/* resolve hardware address, then send (or queue) packet */
|
||||
return etharp_output(netif, ipaddr, p);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* ethernetif_input():
|
||||
*
|
||||
* This function should be called when a packet is ready to be read
|
||||
* from the interface. It uses the function low_level_input() that
|
||||
* should handle the actual reception of bytes from the network
|
||||
* interface.
|
||||
*
|
||||
*/
|
||||
|
||||
static void
|
||||
ethernetif_input(struct netif *netif)
|
||||
{
|
||||
struct ethernetif *ethernetif;
|
||||
struct eth_hdr *ethhdr;
|
||||
struct pbuf *p;
|
||||
|
||||
ethernetif = netif->state;
|
||||
|
||||
/* move received packet into a new pbuf */
|
||||
p = low_level_input(netif);
|
||||
/* no packet could be read, silently ignore this */
|
||||
if (p == NULL) return;
|
||||
/* points to packet payload, which starts with an Ethernet header */
|
||||
ethhdr = p->payload;
|
||||
|
||||
#if LINK_STATS
|
||||
lwip_stats.link.recv++;
|
||||
#endif /* LINK_STATS */
|
||||
|
||||
ethhdr = p->payload;
|
||||
|
||||
switch (htons(ethhdr->type)) {
|
||||
/* IP packet? */
|
||||
case ETHTYPE_IP:
|
||||
#if 0
|
||||
/* CSi disabled ARP table update on ingress IP packets.
|
||||
This seems to work but needs thorough testing. */
|
||||
/* update ARP table */
|
||||
etharp_ip_input(netif, p);
|
||||
#endif
|
||||
/* skip Ethernet header */
|
||||
pbuf_header(p, -sizeof(struct eth_hdr));
|
||||
/* pass to network layer */
|
||||
netif->input(p, netif);
|
||||
break;
|
||||
|
||||
case ETHTYPE_ARP:
|
||||
/* pass p to ARP module */
|
||||
etharp_arp_input(netif, ethernetif->ethaddr, p);
|
||||
break;
|
||||
default:
|
||||
pbuf_free(p);
|
||||
p = NULL;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
arp_timer(void *arg)
|
||||
{
|
||||
etharp_tmr();
|
||||
sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* ethernetif_init():
|
||||
*
|
||||
* Should be called at the beginning of the program to set up the
|
||||
* network interface. It calls the function low_level_init() to do the
|
||||
* actual setup of the hardware.
|
||||
*
|
||||
*/
|
||||
|
||||
err_t
|
||||
ethernetif_init(struct netif *netif)
|
||||
{
|
||||
struct ethernetif *ethernetif;
|
||||
|
||||
ethernetif = mem_malloc(sizeof(struct ethernetif));
|
||||
|
||||
if (ethernetif == NULL)
|
||||
{
|
||||
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
|
||||
return ERR_MEM;
|
||||
}
|
||||
|
||||
#if LWIP_SNMP
|
||||
/* ifType ethernetCsmacd(6) @see RFC1213 */
|
||||
netif->link_type = 6;
|
||||
/* your link speed here */
|
||||
netif->link_speed = ;
|
||||
netif->ts = 0;
|
||||
netif->ifinoctets = 0;
|
||||
netif->ifinucastpkts = 0;
|
||||
netif->ifinnucastpkts = 0;
|
||||
netif->ifindiscards = 0;
|
||||
netif->ifoutoctets = 0;
|
||||
netif->ifoutucastpkts = 0;
|
||||
netif->ifoutnucastpkts = 0;
|
||||
netif->ifoutdiscards = 0;
|
||||
#endif
|
||||
|
||||
netif->state = ethernetif;
|
||||
netif->name[0] = IFNAME0;
|
||||
netif->name[1] = IFNAME1;
|
||||
netif->output = ethernetif_output;
|
||||
netif->linkoutput = low_level_output;
|
||||
|
||||
ethernetif->ethaddr = (struct eth_addr *)&(netif->hwaddr[0]);
|
||||
|
||||
low_level_init(netif);
|
||||
|
||||
etharp_init();
|
||||
|
||||
sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL);
|
||||
|
||||
return ERR_OK;
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user