mirror of
https://github.com/google/mozc-devices.git
synced 2025-11-09 01:03:26 +03:00
78 lines
2.2 KiB
Python
Executable File
78 lines
2.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
#
|
|
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
from nazoru.led import LED_BLUE, LED_RED
|
|
LED_RED.blink(1)
|
|
|
|
import argparse
|
|
import os
|
|
from nazoru import get_default_graph_path
|
|
from nazoru.core import create_keyboard_recorder, Bluetooth, NazoruPredictor
|
|
|
|
def main():
|
|
FLAGS = None
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-g', '--graph',
|
|
type=str,
|
|
default=get_default_graph_path(),
|
|
help='Path to a trained model which is generated by ' +
|
|
'nazoru-training.')
|
|
parser.add_argument('-v', '--verbose', action='store_true')
|
|
FLAGS, unparsed = parser.parse_known_args()
|
|
|
|
LED_RED.blink(0.3)
|
|
|
|
bt_connection = Bluetooth()
|
|
try:
|
|
recorder = create_keyboard_recorder(verbose=FLAGS.verbose)
|
|
except IOError as e:
|
|
LED_RED.off()
|
|
LED_BLUE.off()
|
|
raise e
|
|
predictor = NazoruPredictor(FLAGS.graph)
|
|
|
|
LED_RED.off()
|
|
LED_BLUE.blink(1)
|
|
|
|
print('Ready. Please input your scrrible.')
|
|
while True:
|
|
data, command = recorder.record()
|
|
if command is not None:
|
|
print('command: %s' % command)
|
|
bt_connection.command(command)
|
|
continue
|
|
if data is None:
|
|
print('done.')
|
|
break
|
|
|
|
LED_RED.on()
|
|
result = predictor.predict_top_n(data, 5)
|
|
LED_RED.off()
|
|
|
|
print('\n=== RESULTS ===')
|
|
for item in result:
|
|
print(u'%s (%s): %.5f' % (item[0], item[1], item[2]))
|
|
print('===============\n')
|
|
|
|
most_likely_result = result[0]
|
|
print(u'%s (%s)' % (most_likely_result[0], most_likely_result[1]))
|
|
bt_connection.send(most_likely_result[1])
|
|
|
|
if __name__ == '__main__':
|
|
main()
|