upm/examples/c++/bno055.cxx

130 lines
3.4 KiB
C++
Raw Permalink Normal View History

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <signal.h>
#include "bno055.hpp"
using namespace std;
int shouldRun = true;
void sig_handler(int signo)
{
if (signo == SIGINT)
shouldRun = false;
}
int main(int argc, char **argv)
{
signal(SIGINT, sig_handler);
//! [Interesting]
// Instantiate an BNO055 using default parameters (bus 0, addr
// 0x28). The default running mode is NDOF absolute orientation
// mode.
upm::BNO055 *sensor = new upm::BNO055();
// First we need to calibrate....
cout << "First we need to calibrate. 4 numbers will be output every"
<< endl;
cout << "second for each sensor. 0 means uncalibrated, and 3 means"
<< endl;
cout << "fully calibrated."
<< endl;
cout << "See the UPM documentation on this sensor for instructions on"
<< endl;
cout << "what actions are required to calibrate."
<< endl;
cout << endl;
// do the calibration...
while (shouldRun && !sensor->isFullyCalibrated())
{
int mag, acc, gyr, sys;
sensor->getCalibrationStatus(&mag, &acc, &gyr, &sys);
cout << "Magnetometer: " << mag
<< " Accelerometer: " << acc
<< " Gyroscope: " << gyr
<< " System: " << sys
<< endl;
sleep(1);
}
cout << endl;
cout << "Calibration complete." << endl;
cout << endl;
// now output various fusion data every 250 milliseconds
while (shouldRun)
{
float w, x, y, z;
sensor->update();
sensor->getEulerAngles(&x, &y, &z);
cout << "Euler: Heading: " << x
<< " Roll: " << y
<< " Pitch: " << z
<< " degrees"
<< endl;
sensor->getQuaternions(&w, &x, &y, &z);
cout << "Quaternion: W: " << w
<< " X: " << x
<< " Y: " << y
<< " Z: " << z
<< endl;
sensor->getLinearAcceleration(&x, &y, &z);
cout << "Linear Acceleration: X: " << x
<< " Y: " << y
<< " Z: " << z
<< " m/s^2"
<< endl;
sensor->getGravityVectors(&x, &y, &z);
cout << "Gravity Vector: X: " << x
<< " Y: " << y
<< " Z: " << z
<< " m/s^2"
<< endl;
cout << endl;
usleep(250000);
}
//! [Interesting]
cout << "Exiting..." << endl;
delete sensor;
return 0;
}