upm/examples/java/E50HX_Example.java

92 lines
3.8 KiB
Java
Raw Normal View History

e50hx: Initial implementation This driver requires the UPM BACNETMSTP driver (PR #385) to be merged first. This module implements support for the Veris E50H2 and E50H5 BACnet Energy Meters. From the datasheet: The E50H5 BACnet MS/TP DIN Rail Meter with Data Logging combines exceptional performance and easy installation to deliver a cost-effective solution for power monitoring applications. Native serial communication via BACnet MS/TP provides complete accessibility of all measurements to your Building Automation System. The data logging capability protects data in the event of a power failure. The E50H5 can be easily installed on standard DIN rail, surface mounted or contained in an optional NEMA 4 enclosure, as needed. The front-panel LCD display makes device installation and setup easy and provides local access to the full set of detailed measurements. This module was developed using the upm::BACNETMSTP module, based on libbacnet-stack 0.8.3. Both libbacnet 0.8.3 and the upm::BACNETMSTP libraries must be present in order to build this module. This driver was developed on the E50H5. The Trend Log functionality is not currently supported. The Binary Input Objects are also not supported as these are only used for the Alarm bits which are already available from Analog Input Object 52 as an alarm bitfield incorporating all of the supported alarm indicators. It was connected using an RS232->RS485 interface. You cannot use the built in MCU TTL UART pins for accessing this device -- you must use a full Serial RS232->RS485 or USB-RS485 interface connected via USB. Signed-off-by: Jon Trulson <jtrulson@ics.com> Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
2016-04-01 17:29:48 -06:00
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
import upm_e50hx.E50HX;
public class E50HX_Example
{
private static String defaultDev = "/dev/ttyUSB0";
public static void main(String[] args) throws InterruptedException
{
// ! [Interesting]
// You will need to edit this example to conform to your site
// and your devices, specifically the Device Object Instance
// ID passed to the constructor, and the arguments to
// initMaster() that are appropriate for your BACnet network.
if (args.length > 0)
defaultDev = args[0];
System.out.println("Using device " + defaultDev);
System.out.println("Initializing...");
// Instantiate an E50HX object for an E50HX device that has
// 1075425 as it's unique Device Object Instance ID. NOTE:
// You will certainly want to change this to the correct value
// for your device(s).
E50HX sensor = new E50HX(1075425);
// Initialize our BACnet master, if it has not already been
// initialized, with the device and baudrate, choosing 1000001 as
// our unique Device Object Instance ID, 2 as our MAC address and
// using default values for maxMaster and maxInfoFrames
sensor.initMaster(defaultDev, 38400, 1000001, 2);
// Uncomment to enable debugging output
// sensor.setDebug(true);
System.out.println();
System.out.println("Device Description: "
+ sensor.getDeviceDescription());
System.out.println("Device Location: "
+ sensor.getDeviceLocation());
e50hx: Initial implementation This driver requires the UPM BACNETMSTP driver (PR #385) to be merged first. This module implements support for the Veris E50H2 and E50H5 BACnet Energy Meters. From the datasheet: The E50H5 BACnet MS/TP DIN Rail Meter with Data Logging combines exceptional performance and easy installation to deliver a cost-effective solution for power monitoring applications. Native serial communication via BACnet MS/TP provides complete accessibility of all measurements to your Building Automation System. The data logging capability protects data in the event of a power failure. The E50H5 can be easily installed on standard DIN rail, surface mounted or contained in an optional NEMA 4 enclosure, as needed. The front-panel LCD display makes device installation and setup easy and provides local access to the full set of detailed measurements. This module was developed using the upm::BACNETMSTP module, based on libbacnet-stack 0.8.3. Both libbacnet 0.8.3 and the upm::BACNETMSTP libraries must be present in order to build this module. This driver was developed on the E50H5. The Trend Log functionality is not currently supported. The Binary Input Objects are also not supported as these are only used for the Alarm bits which are already available from Analog Input Object 52 as an alarm bitfield incorporating all of the supported alarm indicators. It was connected using an RS232->RS485 interface. You cannot use the built in MCU TTL UART pins for accessing this device -- you must use a full Serial RS232->RS485 or USB-RS485 interface connected via USB. Signed-off-by: Jon Trulson <jtrulson@ics.com> Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
2016-04-01 17:29:48 -06:00
System.out.println();
// update and print a few values every 5 seconds
while (true)
{
System.out.println("System Voltage: "
+ sensor.getAnalogValue(E50HX.ANALOG_VALUES_T.AV_System_Voltage)
+ " "
+ sensor.getAnalogValueUnits(E50HX.ANALOG_VALUES_T.AV_System_Voltage));
System.out.println("System Type: "
+ sensor.getAnalogValue(E50HX.ANALOG_VALUES_T.AV_System_Type));
System.out.println("Energy Consumption: "
+ sensor.getAnalogInput(E50HX.ANALOG_INPUTS_T.AI_Energy)
+ " "
+ sensor.getAnalogInputUnits(E50HX.ANALOG_INPUTS_T.AI_Energy));
System.out.println("Power Up Counter: "
+ sensor.getAnalogInput(E50HX.ANALOG_INPUTS_T.AI_Power_Up_Count));
System.out.println();
Thread.sleep(5000);
}
// ! [Interesting]
}
}