i2clcd: use the mraa C++ API instead of the C API

Rewrite the i2c module to be based around the MRAA C++ API,
since this makes resource management easier inside of the UPM
C++ classes.

i2clcd.{h,cxx}: remove the close() function. This now automatically gets
called when the object goes out of scope, inside the destructor.

examples/i2clcd: fix C++/Python/Javascript examples that explicitly called the close function.
The I2c context now gets called by the destructor of the sensor class. This
happens when the object goes out of scope or when it gets deleted, if the
object was created using the new keyword, as is the case here.

Signed-off-by: Wouter van Verre <wouter.van.verre@intel.com>
Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
This commit is contained in:
Wouter van Verre
2015-04-20 14:15:41 +01:00
committed by Mihai Tudor Panu
parent 53b58225a4
commit 31c4f470fe
17 changed files with 130 additions and 154 deletions

View File

@ -36,96 +36,92 @@ SSD1327::SSD1327(int bus_in, int addr_in) : I2CLcd(bus_in, addr_in)
{
mraa_result_t error = MRAA_SUCCESS;
usleep(INIT_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xFD, LCD_CMD); // Unlock OLED driver IC MCU
// interface from entering command.
// i.e: Accept commands
m_i2c_lcd_control.writeReg(LCD_CMD, 0xFD); // Unlock OLED driver IC MCU
// interface from entering command.
// i.e: Accept commands
usleep(INIT_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x12, LCD_CMD);
m_i2c_lcd_control.writeReg(LCD_CMD, 0x12);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xAE, LCD_CMD); // Set display off
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xAE); // Set display off
usleep(INIT_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA8, LCD_CMD); // set multiplex ratio
m_i2c_lcd_control.writeReg(LCD_CMD, 0xA8); // set multiplex ratio
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x5F, LCD_CMD); // 96
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x5F); // 96
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA1, LCD_CMD); // set display start line
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xA1); // set display start line
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x00, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x00); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA2, LCD_CMD); // set display offset
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xA2); // set display offset
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x60, LCD_CMD);
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x60);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA0, LCD_CMD); // set remap
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xA0); // set remap
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x46, LCD_CMD);
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x46);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xAB, LCD_CMD); // set vdd internal
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xAB); // set vdd internal
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x01, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x01); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x81, LCD_CMD); // set contrasr
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x81); // set contrasr
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x53, LCD_CMD); // 100 nit
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x53); // 100 nit
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xB1, LCD_CMD); // Set Phase Length
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xB1); // Set Phase Length
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0X51, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0X51); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control,
0xB3,
LCD_CMD); // Set Display Clock Divide Ratio/Oscillator
// Frequency
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xB3); // Set Display Clock Divide Ratio/Oscillator
// Frequency
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x01, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x01); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xB9, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xB9); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xBC, LCD_CMD); // set pre_charge
// voltage/VCOMH
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xBC); // set pre_charge
// voltage/VCOMH
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x08, LCD_CMD); // (0x08);
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x08); // (0x08);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xBE, LCD_CMD); // set VCOMH
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xBE); // set VCOMH
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0X07, LCD_CMD); // (0x07);
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0X07); // (0x07);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xB6, LCD_CMD); // Set second pre-charge
// period
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xB6); // Set second pre-charge
// period
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x01, LCD_CMD); //
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x01); //
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control,
0xD5,
LCD_CMD); // enable second precharge and enternal vsl
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xD5); // enable second precharge and enternal vsl
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0X62, LCD_CMD); // (0x62);
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0X62); // (0x62);
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA4, LCD_CMD); // Set Normal Display Mode
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xA4); // Set Normal Display Mode
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x2E, LCD_CMD); // Deactivate Scroll
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x2E); // Deactivate Scroll
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xAF, LCD_CMD); // Switch on display
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0xAF); // Switch on display
usleep(INIT_SLEEP);
// Row Address
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x75, LCD_CMD); // Set Row Address
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x75); // Set Row Address
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x00, LCD_CMD); // Start 0
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x00); // Start 0
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x5f, LCD_CMD); // End 95
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x5f); // End 95
usleep(INIT_SLEEP);
// Column Address
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x15, LCD_CMD); // Set Column Address
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x15); // Set Column Address
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x08, LCD_CMD); // Start from 8th Column of
// driver IC. This is 0th
// Column for OLED
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x08); // Start from 8th Column of
// driver IC. This is 0th
// Column for OLED
usleep(INIT_SLEEP);
error = mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x37, LCD_CMD); // End at (8 + 47)th
// column. Each Column has 2
// pixels(segments)
error = m_i2c_lcd_control.writeReg(LCD_CMD, 0x37); // End at (8 + 47)th
// column. Each Column has 2
// pixels(segments)
usleep(INIT_SLEEP);
clear();
@ -153,7 +149,7 @@ SSD1327::draw(uint8_t* data, int bytes)
value |= (bitOne) ? grayHigh : 0x00;
value |= (bitTwo) ? grayLow : 0x00;
mraa_i2c_write_byte_data(m_i2c_lcd_control, value, LCD_DATA);
m_i2c_lcd_control.writeReg(LCD_DATA, value);
usleep(CMD_SLEEP - 2000);
}
}
@ -185,19 +181,19 @@ SSD1327::setCursor(int row, int column)
mraa_result_t error = MRAA_SUCCESS;
// Column Address
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x15, LCD_CMD); /* Set Column Address */
m_i2c_lcd_control.writeReg(LCD_CMD, 0x15); /* Set Column Address */
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x08 + (column * 4), LCD_CMD); /* Start Column:
m_i2c_lcd_control.writeReg(LCD_CMD, 0x08 + (column * 4)); /* Start Column:
Start from 8 */
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x37, LCD_CMD); /* End Column */
m_i2c_lcd_control.writeReg(LCD_CMD, 0x37); /* End Column */
usleep(CMD_SLEEP);
// Row Address
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x75, LCD_CMD); /* Set Row Address */
m_i2c_lcd_control.writeReg(LCD_CMD, 0x75); /* Set Row Address */
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x00 + (row * 8), LCD_CMD); /* Start Row*/
m_i2c_lcd_control.writeReg(LCD_CMD, 0x00 + (row * 8)); /* Start Row*/
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x07 + (row * 8), LCD_CMD); /* End Row*/
m_i2c_lcd_control.writeReg(LCD_CMD, 0x07 + (row * 8)); /* End Row*/
usleep(CMD_SLEEP);
return error;
@ -254,7 +250,7 @@ SSD1327::writeChar(uint8_t value)
data |= (bitOne) ? grayHigh : 0x00;
data |= (bitTwo) ? grayLow : 0x00;
mraa_i2c_write_byte_data(m_i2c_lcd_control, data, LCD_DATA);
m_i2c_lcd_control.writeReg(LCD_DATA, data);
usleep(CMD_SLEEP - 2000);
}
}
@ -263,43 +259,42 @@ SSD1327::writeChar(uint8_t value)
mraa_result_t
SSD1327::setNormalDisplay()
{
return mraa_i2c_write_byte_data(m_i2c_lcd_control,
DISPLAY_CMD_SET_NORMAL,
LCD_CMD); // set to normal display '1' is ON
return m_i2c_lcd_control.writeReg(LCD_CMD,
DISPLAY_CMD_SET_NORMAL); // set to normal display '1' is ON
}
mraa_result_t
SSD1327::setHorizontalMode()
{
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA0, LCD_CMD); // remap to
m_i2c_lcd_control.writeReg(LCD_CMD, 0xA0); // remap to
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x42, LCD_CMD); // horizontal mode
m_i2c_lcd_control.writeReg(LCD_CMD, 0x42); // horizontal mode
usleep(CMD_SLEEP);
// Row Address
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x75, LCD_CMD); // Set Row Address
m_i2c_lcd_control.writeReg(LCD_CMD, 0x75); // Set Row Address
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x00, LCD_CMD); // Start 0
m_i2c_lcd_control.writeReg(LCD_CMD, 0x00); // Start 0
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x5f, LCD_CMD); // End 95
m_i2c_lcd_control.writeReg(LCD_CMD, 0x5f); // End 95
usleep(CMD_SLEEP);
// Column Address
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x15, LCD_CMD); // Set Column Address
m_i2c_lcd_control.writeReg(LCD_CMD, 0x15); // Set Column Address
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x08, LCD_CMD); // Start from 8th Column of driver
// IC. This is 0th Column for OLED
m_i2c_lcd_control.writeReg(LCD_CMD, 0x08); // Start from 8th Column of driver
// IC. This is 0th Column for OLED
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x37, LCD_CMD); // End at (8 + 47)th column. Each
// Column has 2 pixels(or segments)
m_i2c_lcd_control.writeReg(LCD_CMD, 0x37); // End at (8 + 47)th column. Each
// Column has 2 pixels(or segments)
usleep(CMD_SLEEP);
}
mraa_result_t
SSD1327::setVerticalMode()
{
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0xA0, LCD_CMD); // remap to
m_i2c_lcd_control.writeReg(LCD_CMD, 0xA0); // remap to
usleep(CMD_SLEEP);
mraa_i2c_write_byte_data(m_i2c_lcd_control, 0x46, LCD_CMD); // Vertical mode
m_i2c_lcd_control.writeReg(LCD_CMD, 0x46); // Vertical mode
usleep(CMD_SLEEP);
}