styling: convert TAB to four SPACES

Signed-off-by: Kiveisha Yevgeniy <yevgeniy.kiveisha@intel.com>
This commit is contained in:
Kiveisha Yevgeniy
2014-06-03 09:12:47 +00:00
parent 0db7af89f9
commit 5b8922f7bf
20 changed files with 635 additions and 635 deletions

View File

@ -31,21 +31,21 @@
using namespace upm;
NRF24l01::NRF24l01 (uint8_t cs) {
maa_init();
nrfInitModule (cs, 8);
maa_init();
nrfInitModule (cs, 8);
}
NRF24l01::~NRF24l01 () {
maa_result_t error = MAA_SUCCESS;
error = maa_spi_stop(m_spi);
if (error != MAA_SUCCESS) {
maa_result_print(error);
}
error = maa_gpio_close (m_cePinCtx);
maa_result_t error = MAA_SUCCESS;
error = maa_spi_stop(m_spi);
if (error != MAA_SUCCESS) {
maa_result_print(error);
}
error = maa_gpio_close (m_csnPinCtx);
error = maa_gpio_close (m_cePinCtx);
if (error != MAA_SUCCESS) {
maa_result_print(error);
}
error = maa_gpio_close (m_csnPinCtx);
if (error != MAA_SUCCESS) {
maa_result_print(error);
}
@ -53,268 +53,268 @@ NRF24l01::~NRF24l01 () {
void
NRF24l01::nrfInitModule (uint8_t chip_select, uint8_t chip_enable) {
maa_result_t error = MAA_SUCCESS;
maa_result_t error = MAA_SUCCESS;
m_csn = chip_select;
m_ce = chip_enable;
m_channel = 1;
m_csn = chip_select;
m_ce = chip_enable;
m_channel = 1;
m_csnPinCtx = maa_gpio_init (m_csn);
if (m_csnPinCtx == NULL) {
m_csnPinCtx = maa_gpio_init (m_csn);
if (m_csnPinCtx == NULL) {
fprintf (stderr, "Are you sure that pin%d you requested is valid on your platform?", m_csn);
exit (1);
}
m_cePinCtx = maa_gpio_init (m_ce);
if (m_cePinCtx == NULL) {
exit (1);
}
m_cePinCtx = maa_gpio_init (m_ce);
if (m_cePinCtx == NULL) {
fprintf (stderr, "Are you sure that pin%d you requested is valid on your platform?", m_ce);
exit (1);
}
error = maa_gpio_dir (m_csnPinCtx, MAA_GPIO_OUT);
exit (1);
}
error = maa_gpio_dir (m_csnPinCtx, MAA_GPIO_OUT);
if (error != MAA_SUCCESS) {
maa_result_print (error);
}
error = maa_gpio_dir (m_cePinCtx, MAA_GPIO_OUT);
error = maa_gpio_dir (m_cePinCtx, MAA_GPIO_OUT);
if (error != MAA_SUCCESS) {
maa_result_print (error);
}
nrfCELow ();
m_spi = maa_spi_init (0);
nrfCELow ();
m_spi = maa_spi_init (0);
}
void
NRF24l01::nrfConfigModule() {
/* Set RF channel */
nrfConfigRegister (RF_CH, m_channel);
/* Set RF channel */
nrfConfigRegister (RF_CH, m_channel);
/* Set length of incoming payload */
nrfConfigRegister (RX_PW_P0, m_payload);
nrfConfigRegister (RX_PW_P1, m_payload);
/* Set length of incoming payload for broadcast */
nrfConfigRegister (RX_PW_P2, m_payload);
/* Start receiver */
nrfPowerUpRX ();
nrfFlushRX ();
/* Set length of incoming payload */
nrfConfigRegister (RX_PW_P0, m_payload);
nrfConfigRegister (RX_PW_P1, m_payload);
/* Set length of incoming payload for broadcast */
nrfConfigRegister (RX_PW_P2, m_payload);
/* Start receiver */
nrfPowerUpRX ();
nrfFlushRX ();
}
/* Clocks only one byte into the given MiRF register */
void
NRF24l01::nrfConfigRegister(uint8_t reg, uint8_t value) {
nrfCSOn ();
maa_spi_write (m_spi, W_REGISTER | (REGISTER_MASK & reg));
maa_spi_write (m_spi, value);
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, W_REGISTER | (REGISTER_MASK & reg));
maa_spi_write (m_spi, value);
nrfCSOff ();
}
void
NRF24l01::nrfPowerUpRX() {
m_ptx = 0;
nrfCELow();
nrfConfigRegister(CONFIG, mirf_CONFIG | ( (1<<PWR_UP) | (1<<PRIM_RX) ) );
nrfCEHigh();
nrfConfigRegister(STATUS,(1 << TX_DS) | (1 << MAX_RT));
m_ptx = 0;
nrfCELow();
nrfConfigRegister(CONFIG, mirf_CONFIG | ( (1<<PWR_UP) | (1<<PRIM_RX) ) );
nrfCEHigh();
nrfConfigRegister(STATUS,(1 << TX_DS) | (1 << MAX_RT));
}
void
NRF24l01::nrfFlushRX() {
nrfCSOn ();
maa_spi_write (m_spi, FLUSH_RX);
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, FLUSH_RX);
nrfCSOff ();
}
/* Sets the receiving address */
void
NRF24l01::nrfSetRXaddr(uint8_t * addr) {
nrfCELow();
nrfWriteRegister(RX_ADDR_P1, addr, mirf_ADDR_LEN);
nrfCEHigh();
nrfCELow();
nrfWriteRegister(RX_ADDR_P1, addr, mirf_ADDR_LEN);
nrfCEHigh();
}
/* Sets the transmitting address */
void
NRF24l01::nrfSetTXaddr(uint8_t * addr)
{
/* RX_ADDR_P0 must be set to the sending addr for auto ack to work. */
nrfWriteRegister (RX_ADDR_P0, addr, mirf_ADDR_LEN);
nrfWriteRegister (TX_ADDR, addr, mirf_ADDR_LEN);
/* RX_ADDR_P0 must be set to the sending addr for auto ack to work. */
nrfWriteRegister (RX_ADDR_P0, addr, mirf_ADDR_LEN);
nrfWriteRegister (TX_ADDR, addr, mirf_ADDR_LEN);
}
/* The broadcast address should be 0xFFFFF */
void
NRF24l01::nrfSetBroadcastAddr (uint8_t * addr) {
nrfCELow ();
nrfWriteRegister (RX_ADDR_P2, addr, mirf_ADDR_LEN);
nrfCEHigh ();
nrfCELow ();
nrfWriteRegister (RX_ADDR_P2, addr, mirf_ADDR_LEN);
nrfCEHigh ();
}
void
NRF24l01::nrfSetPayload (uint8_t load) {
m_payload = load;
m_payload = load;
}
void
NRF24l01::nrfWriteRegister(uint8_t reg, uint8_t * value, uint8_t len)
{
nrfCSOn ();
maa_spi_write (m_spi, W_REGISTER | (REGISTER_MASK & reg));
nrfTransmitSync(value, len);
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, W_REGISTER | (REGISTER_MASK & reg));
nrfTransmitSync(value, len);
nrfCSOff ();
}
void
NRF24l01::nrfTransmitSync(uint8_t *dataout, uint8_t len){
uint8_t i;
for(i = 0; i < len; i++) {
maa_spi_write (m_spi, dataout[i]);
}
uint8_t i;
for(i = 0; i < len; i++) {
maa_spi_write (m_spi, dataout[i]);
}
}
/* Checks if data is available for reading */
bool
NRF24l01::nrfDataReady() {
uint8_t status = nrfGetStatus();
if ( status & (1 << RX_DR) ) {
return 1;
}
return !nrfRXFifoEmpty();
uint8_t status = nrfGetStatus();
if ( status & (1 << RX_DR) ) {
return 1;
}
return !nrfRXFifoEmpty();
}
uint8_t
NRF24l01::nrfGetStatus () {
uint8_t rv;
nrfReadRegister (STATUS, &rv, 1);
return rv;
uint8_t rv;
nrfReadRegister (STATUS, &rv, 1);
return rv;
}
/* Reads an array of bytes from the given start position in the MiRF registers. */
void
NRF24l01::nrfReadRegister (uint8_t reg, uint8_t * value, uint8_t len)
{
nrfCSOn ();
maa_spi_write (m_spi, R_REGISTER | (REGISTER_MASK & reg));
nrfTransferSync (value, value, len);
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, R_REGISTER | (REGISTER_MASK & reg));
nrfTransferSync (value, value, len);
nrfCSOff ();
}
void
NRF24l01::nrfTransferSync (uint8_t *dataout,uint8_t *datain,uint8_t len) {
uint8_t i;
for(i = 0;i < len;i++) {
datain[i] = maa_spi_write (m_spi, dataout[i]);
}
uint8_t i;
for(i = 0;i < len;i++) {
datain[i] = maa_spi_write (m_spi, dataout[i]);
}
}
bool
NRF24l01::nrfRXFifoEmpty () {
uint8_t fifo_status;
nrfReadRegister (FIFO_STATUS, &fifo_status, sizeof(fifo_status));
return (fifo_status & (1 << RX_EMPTY));
uint8_t fifo_status;
nrfReadRegister (FIFO_STATUS, &fifo_status, sizeof(fifo_status));
return (fifo_status & (1 << RX_EMPTY));
}
/* Reads payload bytes into data array */
void
NRF24l01::nrfGetData (uint8_t * data)
{
nrfCSOn ();
/* Send cmd to read rx payload */
maa_spi_write (m_spi, R_RX_PAYLOAD);
/* Read payload */
nrfTransferSync(data, data, m_payload);
nrfCSOff ();
nrfConfigRegister(STATUS, (1<<RX_DR));
nrfCSOn ();
/* Send cmd to read rx payload */
maa_spi_write (m_spi, R_RX_PAYLOAD);
/* Read payload */
nrfTransferSync(data, data, m_payload);
nrfCSOff ();
nrfConfigRegister(STATUS, (1<<RX_DR));
}
/* Sends a data package to the default address. Be sure to send the correct
* amount of bytes as configured as payload on the receiver. */
void
NRF24l01::nrfSend(uint8_t * value) {
uint8_t status;
status = nrfGetStatus();
uint8_t status;
status = nrfGetStatus();
while (m_ptx) {
status = nrfGetStatus();
while (m_ptx) {
status = nrfGetStatus();
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
m_ptx = 0;
break;
}
} // Wait until last paket is send
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
m_ptx = 0;
break;
}
} // Wait until last paket is send
nrfCELow();
nrfPowerUpTX(); // Set to transmitter mode , Power up
nrfCSOn ();
maa_spi_write (m_spi, FLUSH_TX); // Write cmd to flush tx fifo
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, W_TX_PAYLOAD); // Write cmd to write payload
nrfTransmitSync(value, m_payload); // Write payload
nrfCSOff ();
nrfCEHigh(); // Start transmission
nrfCELow();
nrfPowerUpTX(); // Set to transmitter mode , Power up
nrfCSOn ();
maa_spi_write (m_spi, FLUSH_TX); // Write cmd to flush tx fifo
nrfCSOff ();
nrfCSOn ();
maa_spi_write (m_spi, W_TX_PAYLOAD); // Write cmd to write payload
nrfTransmitSync(value, m_payload); // Write payload
nrfCSOff ();
nrfCEHigh(); // Start transmission
}
void
NRF24l01::nrfSend () {
nrfSend (m_txBuffer);
nrfSend (m_txBuffer);
}
bool
NRF24l01::nrfIsSending () {
uint8_t status;
if (m_ptx) { // Sending mode.
status = nrfGetStatus();
/* if sending successful (TX_DS) or max retries exceded (MAX_RT). */
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
nrfPowerUpRX();
return false;
}
return true;
}
return false;
uint8_t status;
if (m_ptx) { // Sending mode.
status = nrfGetStatus();
/* if sending successful (TX_DS) or max retries exceded (MAX_RT). */
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
nrfPowerUpRX();
return false;
}
return true;
}
return false;
}
void
NRF24l01::nrfPowerUpTX () {
m_ptx = 1;
nrfConfigRegister (CONFIG, mirf_CONFIG | ( (1<<PWR_UP) | (0<<PRIM_RX) ) );
m_ptx = 1;
nrfConfigRegister (CONFIG, mirf_CONFIG | ( (1<<PWR_UP) | (0<<PRIM_RX) ) );
}
void
NRF24l01::nrfPowerDown () {
nrfCELow ();
nrfConfigRegister (CONFIG, mirf_CONFIG);
nrfCELow ();
nrfConfigRegister (CONFIG, mirf_CONFIG);
}
maa_result_t
NRF24l01::nrfCEHigh () {
return maa_gpio_write (m_cePinCtx, HIGH);
return maa_gpio_write (m_cePinCtx, HIGH);
}
maa_result_t
NRF24l01::nrfCELow () {
return maa_gpio_write (m_cePinCtx, LOW);
return maa_gpio_write (m_cePinCtx, LOW);
}
maa_result_t
NRF24l01::nrfCSOn () {
return maa_gpio_write (m_csnPinCtx, LOW);
return maa_gpio_write (m_csnPinCtx, LOW);
}
maa_result_t
NRF24l01::nrfCSOff () {
return maa_gpio_write (m_csnPinCtx, HIGH);
return maa_gpio_write (m_csnPinCtx, HIGH);
}
void
NRF24l01::nrfListenForChannel() {
if(!nrfIsSending() && nrfDataReady()) {
nrfGetData(m_rxBuffer);
dataRecievedHandler(); /* let know that data arrived */
}
if(!nrfIsSending() && nrfDataReady()) {
nrfGetData(m_rxBuffer);
dataRecievedHandler(); /* let know that data arrived */
}
}

View File

@ -29,90 +29,90 @@
#include <maa/spi.h>
/* Memory Map */
#define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS 0x07
#define OBSERVE_TX 0x08
#define CD 0x09
#define RX_ADDR_P0 0x0A
#define RX_ADDR_P1 0x0B
#define RX_ADDR_P2 0x0C
#define RX_ADDR_P3 0x0D
#define RX_ADDR_P4 0x0E
#define RX_ADDR_P5 0x0F
#define TX_ADDR 0x10
#define RX_PW_P0 0x11
#define RX_PW_P1 0x12
#define RX_PW_P2 0x13
#define RX_PW_P3 0x14
#define RX_PW_P4 0x15
#define RX_PW_P5 0x16
#define FIFO_STATUS 0x17
#define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS 0x07
#define OBSERVE_TX 0x08
#define CD 0x09
#define RX_ADDR_P0 0x0A
#define RX_ADDR_P1 0x0B
#define RX_ADDR_P2 0x0C
#define RX_ADDR_P3 0x0D
#define RX_ADDR_P4 0x0E
#define RX_ADDR_P5 0x0F
#define TX_ADDR 0x10
#define RX_PW_P0 0x11
#define RX_PW_P1 0x12
#define RX_PW_P2 0x13
#define RX_PW_P3 0x14
#define RX_PW_P4 0x15
#define RX_PW_P5 0x16
#define FIFO_STATUS 0x17
/* Bit Mnemonics */
#define MASK_RX_DR 6
#define MASK_TX_DS 5
#define MASK_MAX_RT 4
#define EN_CRC 3
#define CRCO 2
#define PWR_UP 1
#define PRIM_RX 0
#define ENAA_P5 5
#define ENAA_P4 4
#define ENAA_P3 3
#define ENAA_P2 2
#define ENAA_P1 1
#define ENAA_P0 0
#define ERX_P5 5
#define ERX_P4 4
#define ERX_P3 3
#define ERX_P2 2
#define ERX_P1 1
#define ERX_P0 0
#define AW 0
#define ARD 4
#define ARC 0
#define PLL_LOCK 4
#define RF_DR 3
#define RF_PWR 1
#define LNA_HCURR 0
#define RX_DR 6
#define TX_DS 5
#define MAX_RT 4
#define RX_P_NO 1
#define TX_FULL 0
#define PLOS_CNT 4
#define ARC_CNT 0
#define TX_REUSE 6
#define FIFO_FULL 5
#define TX_EMPTY 4
#define RX_FULL 1
#define RX_EMPTY 0
#define MASK_RX_DR 6
#define MASK_TX_DS 5
#define MASK_MAX_RT 4
#define EN_CRC 3
#define CRCO 2
#define PWR_UP 1
#define PRIM_RX 0
#define ENAA_P5 5
#define ENAA_P4 4
#define ENAA_P3 3
#define ENAA_P2 2
#define ENAA_P1 1
#define ENAA_P0 0
#define ERX_P5 5
#define ERX_P4 4
#define ERX_P3 3
#define ERX_P2 2
#define ERX_P1 1
#define ERX_P0 0
#define AW 0
#define ARD 4
#define ARC 0
#define PLL_LOCK 4
#define RF_DR 3
#define RF_PWR 1
#define LNA_HCURR 0
#define RX_DR 6
#define TX_DS 5
#define MAX_RT 4
#define RX_P_NO 1
#define TX_FULL 0
#define PLOS_CNT 4
#define ARC_CNT 0
#define TX_REUSE 6
#define FIFO_FULL 5
#define TX_EMPTY 4
#define RX_FULL 1
#define RX_EMPTY 0
/* Instruction Mnemonics */
#define R_REGISTER 0x00
#define W_REGISTER 0x20
#define REGISTER_MASK 0x1F
#define R_RX_PAYLOAD 0x61
#define W_TX_PAYLOAD 0xA0
#define FLUSH_TX 0xE1
#define FLUSH_RX 0xE2
#define REUSE_TX_PL 0xE3
#define NOP 0xFF
#define R_REGISTER 0x00
#define W_REGISTER 0x20
#define REGISTER_MASK 0x1F
#define R_RX_PAYLOAD 0x61
#define W_TX_PAYLOAD 0xA0
#define FLUSH_TX 0xE1
#define FLUSH_RX 0xE2
#define REUSE_TX_PL 0xE3
#define NOP 0xFF
/* Nrf24l settings */
#define mirf_ADDR_LEN 5
#define mirf_CONFIG ((1<<EN_CRC) | (0<<CRCO) )
#define mirf_ADDR_LEN 5
#define mirf_CONFIG ((1<<EN_CRC) | (0<<CRCO) )
#define MAX_BUFFER 32
#define MAX_BUFFER 32
#define HIGH 1
#define LOW 0
#define HIGH 1
#define LOW 0
namespace upm {
@ -120,61 +120,61 @@ typedef void (* funcPtrVoidVoid) ();
class NRF24l01 {
public:
NRF24l01 (uint8_t cs);
~NRF24l01 ();
std::string name()
NRF24l01 (uint8_t cs);
~NRF24l01 ();
std::string name()
{
return m_name;
}
void nrfInitModule (uint8_t chipSelect, uint8_t chipEnable);
void nrfConfigModule ();
void nrfSend (uint8_t *value);
void nrfSend ();
void nrfSetRXaddr (uint8_t * addr);
void nrfSetTXaddr (uint8_t * addr);
void nrfSetBroadcastAddr (uint8_t * addr);
void nrfSetPayload (uint8_t load);
bool nrfDataReady ();
bool nrfIsSending ();
bool nrfRXFifoEmpty ();
bool nrfTXFifoEmpty ();
void nrfGetData (uint8_t * data);
uint8_t nrfGetStatus ();
void nrfTransmitSync (uint8_t *dataout, uint8_t len);
void nrfTransferSync (uint8_t *dataout ,uint8_t *datain, uint8_t len);
void nrfConfigRegister (uint8_t reg, uint8_t value);
void nrfReadRegister (uint8_t reg, uint8_t * value, uint8_t len);
void nrfWriteRegister (uint8_t reg, uint8_t * value, uint8_t len);
void nrfPowerUpRX ();
void nrfPowerUpTX ();
void nrfPowerDown ();
void nrfInitModule (uint8_t chipSelect, uint8_t chipEnable);
void nrfConfigModule ();
void nrfSend (uint8_t *value);
void nrfSend ();
void nrfSetRXaddr (uint8_t * addr);
void nrfSetTXaddr (uint8_t * addr);
void nrfSetBroadcastAddr (uint8_t * addr);
void nrfSetPayload (uint8_t load);
bool nrfDataReady ();
bool nrfIsSending ();
bool nrfRXFifoEmpty ();
bool nrfTXFifoEmpty ();
void nrfGetData (uint8_t * data);
uint8_t nrfGetStatus ();
void nrfTransmitSync (uint8_t *dataout, uint8_t len);
void nrfTransferSync (uint8_t *dataout ,uint8_t *datain, uint8_t len);
void nrfConfigRegister (uint8_t reg, uint8_t value);
void nrfReadRegister (uint8_t reg, uint8_t * value, uint8_t len);
void nrfWriteRegister (uint8_t reg, uint8_t * value, uint8_t len);
void nrfPowerUpRX ();
void nrfPowerUpTX ();
void nrfPowerDown ();
maa_result_t nrfCEHigh ();
maa_result_t nrfCELow ();
maa_result_t nrfCSOn ();
maa_result_t nrfCSOff ();
void nrfFlushRX ();
void nrfListenForChannel();
maa_result_t nrfCEHigh ();
maa_result_t nrfCELow ();
maa_result_t nrfCSOn ();
maa_result_t nrfCSOff ();
void nrfFlushRX ();
void nrfListenForChannel();
uint8_t m_rxBuffer[MAX_BUFFER];
uint8_t m_txBuffer[MAX_BUFFER];
uint8_t m_rxBuffer[MAX_BUFFER];
uint8_t m_txBuffer[MAX_BUFFER];
funcPtrVoidVoid dataRecievedHandler;
private:
maa_spi_context m_spi;
uint8_t m_ce;
uint8_t m_csn;
uint8_t m_channel;
uint8_t m_ptx;
uint8_t m_payload;
uint8_t m_localAddress[5];
maa_gpio_context m_csnPinCtx;
maa_gpio_context m_cePinCtx;
funcPtrVoidVoid dataRecievedHandler;
private:
maa_spi_context m_spi;
uint8_t m_ce;
uint8_t m_csn;
uint8_t m_channel;
uint8_t m_ptx;
uint8_t m_payload;
uint8_t m_localAddress[5];
maa_gpio_context m_csnPinCtx;
maa_gpio_context m_cePinCtx;
std::string m_name;
std::string m_name;
};
}