examples: Remove heap allocation from C++ examples

Cleanup of UPM C++ examples.  Switched from heap allocation to
stack allocation when possible.  This simplifies the samples since it
removes the need for explicit memory management.  A script was used to
identify and replace pointer use.  To simplify the replace script, I
re-formatted the C++ examples using the UPM .clang-format file.
Unfortuantely this changes the look of the UPM C++ examples to a large
degree.  However, examples will now have a standard look/feel and
uniform formatting.

    * Ran clang-format w/provided UPM .clang-format file
    * Removed new's/delete's whenever possible (left those in interface
      examples)
    * Added IIO sensor library implementation of callback void* arg
    * Converted all sleeps to upm defined delays (added header when
      necessary)
    * Scrubbed CXX example includes

Signed-off-by: Noel Eck <noel.eck@intel.com>
This commit is contained in:
Noel Eck
2017-08-30 15:00:29 -07:00
committed by Mihai Tudor Panu
parent bd6e4ec786
commit 5cefe7f5f3
290 changed files with 7976 additions and 8520 deletions

View File

@ -22,108 +22,82 @@
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <signal.h>
#include "bno055.hpp"
#include "upm_utilities.h"
using namespace std;
int shouldRun = true;
void sig_handler(int signo)
void
sig_handler(int signo)
{
if (signo == SIGINT)
shouldRun = false;
if (signo == SIGINT)
shouldRun = false;
}
int main(int argc, char **argv)
int
main(int argc, char** argv)
{
signal(SIGINT, sig_handler);
//! [Interesting]
signal(SIGINT, sig_handler);
//! [Interesting]
// Instantiate an BNO055 using default parameters (bus 0, addr
// 0x28). The default running mode is NDOF absolute orientation
// mode.
upm::BNO055 *sensor = new upm::BNO055();
// Instantiate an BNO055 using default parameters (bus 0, addr
// 0x28). The default running mode is NDOF absolute orientation
// mode.
upm::BNO055 sensor;
// First we need to calibrate....
cout << "First we need to calibrate. 4 numbers will be output every"
<< endl;
cout << "second for each sensor. 0 means uncalibrated, and 3 means"
<< endl;
cout << "fully calibrated."
<< endl;
cout << "See the UPM documentation on this sensor for instructions on"
<< endl;
cout << "what actions are required to calibrate."
<< endl;
cout << endl;
// First we need to calibrate....
cout << "First we need to calibrate. 4 numbers will be output every" << endl;
cout << "second for each sensor. 0 means uncalibrated, and 3 means" << endl;
cout << "fully calibrated." << endl;
cout << "See the UPM documentation on this sensor for instructions on" << endl;
cout << "what actions are required to calibrate." << endl;
cout << endl;
// do the calibration...
while (shouldRun && !sensor->isFullyCalibrated())
{
int mag, acc, gyr, sys;
sensor->getCalibrationStatus(&mag, &acc, &gyr, &sys);
// do the calibration...
while (shouldRun && !sensor.isFullyCalibrated()) {
int mag, acc, gyr, sys;
sensor.getCalibrationStatus(&mag, &acc, &gyr, &sys);
cout << "Magnetometer: " << mag
<< " Accelerometer: " << acc
<< " Gyroscope: " << gyr
<< " System: " << sys
<< endl;
cout << "Magnetometer: " << mag << " Accelerometer: " << acc << " Gyroscope: " << gyr
<< " System: " << sys << endl;
sleep(1);
upm_delay(1);
}
cout << endl;
cout << "Calibration complete." << endl;
cout << endl;
cout << endl;
cout << "Calibration complete." << endl;
cout << endl;
// now output various fusion data every 250 milliseconds
while (shouldRun)
{
float w, x, y, z;
// now output various fusion data every 250 milliseconds
while (shouldRun) {
float w, x, y, z;
sensor->update();
sensor.update();
sensor->getEulerAngles(&x, &y, &z);
cout << "Euler: Heading: " << x
<< " Roll: " << y
<< " Pitch: " << z
<< " degrees"
<< endl;
sensor.getEulerAngles(&x, &y, &z);
cout << "Euler: Heading: " << x << " Roll: " << y << " Pitch: " << z << " degrees" << endl;
sensor->getQuaternions(&w, &x, &y, &z);
cout << "Quaternion: W: " << w
<< " X: " << x
<< " Y: " << y
<< " Z: " << z
<< endl;
sensor.getQuaternions(&w, &x, &y, &z);
cout << "Quaternion: W: " << w << " X: " << x << " Y: " << y << " Z: " << z << endl;
sensor->getLinearAcceleration(&x, &y, &z);
cout << "Linear Acceleration: X: " << x
<< " Y: " << y
<< " Z: " << z
<< " m/s^2"
<< endl;
sensor.getLinearAcceleration(&x, &y, &z);
cout << "Linear Acceleration: X: " << x << " Y: " << y << " Z: " << z << " m/s^2" << endl;
sensor->getGravityVectors(&x, &y, &z);
cout << "Gravity Vector: X: " << x
<< " Y: " << y
<< " Z: " << z
<< " m/s^2"
<< endl;
sensor.getGravityVectors(&x, &y, &z);
cout << "Gravity Vector: X: " << x << " Y: " << y << " Z: " << z << " m/s^2" << endl;
cout << endl;
usleep(250000);
cout << endl;
upm_delay_us(250000);
}
//! [Interesting]
//! [Interesting]
cout << "Exiting..." << endl;
cout << "Exiting..." << endl;
delete sensor;
return 0;
return 0;
}