RSC: Initial Commit

Signed-off-by: Abhishek Malik <abhishek.malik@intel.com>
This commit is contained in:
Abhishek Malik 2017-04-02 23:04:04 -07:00
parent b239866e99
commit 96eb834e9b
15 changed files with 1688 additions and 0 deletions

View File

@ -342,6 +342,7 @@ add_example (hdc1000)
add_example (bmg160)
add_example (bma250e)
add_example (bmm150)
add_example (rsc)
# These are special cases where you specify example binary, source file and module(s)
include_directories (${PROJECT_SOURCE_DIR}/src)

64
examples/c++/rsc.cxx Normal file
View File

@ -0,0 +1,64 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <signal.h>
#include "rsc.hpp"
using namespace std;
int shouldRun = true;
void sig_handler(int signo)
{
if (signo == SIGINT)
shouldRun = false;
}
int main ()
{
signal(SIGINT, sig_handler);
//! [Interesting]
upm::RSC* rsc = new upm::RSC(0, 9, 8);
cout << "Sensor Name: " << rsc->getSensorName() << endl;
rsc->setMode(NORMAL_MODE);
rsc->setDataRate(N_DR_330_SPS);
while (shouldRun) {
cout << "inH2O pressure: " << rsc->getPressure() << endl;
cout << "Temp (C): " << rsc->getTemperature() << endl;
sleep(1);
}
//! [Interesting]
cout << "Exiting..." << endl;
delete rsc;
return 0;
}

View File

@ -156,6 +156,7 @@ add_example (lcdks)
add_example (bmg160)
add_example (bma250e)
add_example (bmm150)
add_example (rsc)
# Custom examples
add_custom_example (nmea_gps_i2c-example-c nmea_gps_i2c.c nmea_gps)

47
examples/c/rsc.c Normal file
View File

@ -0,0 +1,47 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include "upm_utilities.h"
#include "rsc.h"
int main(void) {
//! [Interesting]
rsc_context dev = rsc_init(0, 9, 8);
rsc_set_data_rate(dev, N_DR_330_SPS);
rsc_set_mode(dev, NORMAL_MODE);
float pressure;
float temp;
while(1){
pressure = rsc_get_pressure(dev);
printf("Retrieved pressure: %f %d\n", pressure, dev->unit);
temp = rsc_get_temperature(dev);
printf("Retieved temperature: %f C\n", temp);
upm_delay_ms(500);
}
//! [Interesting]
return 0;
}

View File

@ -0,0 +1,45 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
var rsc = require("jsupm_rsc");
// Instantiate a Honeywell RSC Pressure Sensor at bus 0
var rsc_sensor = new rsc.RSC(0, 9, 8);
console.log("Sensor Name: " + rsc_sensor.getSensorName());
console.log("Sensor Serial No.: " + rsc_sensor.getSensorSerialNumber());
var myInterval = setInterval(function()
{
console.log("Pressure: " + rsc_sensor.getPressure() + " " + rsc_sensor.getPressureUnit());
console.log("Temperature: " + rsc_sensor.getTemperature() + " C");
}, 100);
// When exiting: clear interval and print message
process.on('SIGINT', function()
{
clearInterval(myInterval);
console.log("Exiting...");
process.exit(0);
});

55
examples/python/rsc.py Normal file
View File

@ -0,0 +1,55 @@
#!/usr/bin/python
# Author: Abhishek Malik <abhishek.malik@intel.com>
# Copyright (c) 2017 Intel Corporation.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import print_function
import time, sys, signal, atexit
from upm import pyupm_rsc as rsc
def main():
# Instantiate a Honeywell RSC Pressure sensor on the SPI bus 0
rsc_sensor = rsc.RSC(0, 9, 8);
## Exit handlers ##
# This function stops python from printing a stacktrace when you hit control-C
def SIGINTHandler(signum, frame):
raise SystemExit
# This function lets you run code on exit, including functions from abpdrrt005pg2a5
def exitHandler():
print("Exiting")
sys.exit(0)
# Register exit handlers
atexit.register(exitHandler)
signal.signal(signal.SIGINT, SIGINTHandler)
# Read the value every second and detect the pressure
print("Sensor Name: {0}".format(rsc_sensor.getSensorName()))
print("Sensor Serial Number: {0}".format(rsc_sensor.getSensorSerialNumber()))
while(1):
print("Pressure {0}: {1}".format(rsc_sensor.getPressureUnit(), rsc_sensor.getPressure()))
print("Temperature C: {0}".format(rsc_sensor.getTemperature()))
time.sleep(1)
if __name__ == '__main__':
main()

8
src/rsc/CMakeLists.txt Normal file
View File

@ -0,0 +1,8 @@
upm_mixed_module_init (NAME rsc
DESCRIPTION "Honeywell RSC TruStability Pressure and Temperature Sensor"
C_HDR rsc.h rsc_regs.h
C_SRC rsc.c
CPP_HDR rsc.hpp
CPP_SRC rsc.cxx
CPP_WRAPS_C
REQUIRES mraa)

19
src/rsc/javaupm_rsc.i Normal file
View File

@ -0,0 +1,19 @@
%module javaupm_rsc
%include "../upm.i"
%{
#include "rsc.hpp"
%}
%include "rsc.hpp"
%pragma(java) jniclasscode=%{
static {
try {
System.loadLibrary("javaupm_rsc");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. \n" + e);
System.exit(1);
}
}
%}

8
src/rsc/jsupm_rsc.i Normal file
View File

@ -0,0 +1,8 @@
%module jsupm_rsc
%include "../upm.i"
%{
#include "rsc.hpp"
%}
%include "rsc.hpp"

11
src/rsc/pyupm_rsc.i Normal file
View File

@ -0,0 +1,11 @@
// Include doxygen-generated documentation
%include "pyupm_doxy2swig.i"
%module pyupm_rsc
%include "../upm.i"
%feature("autodoc", "3");
%include "rsc.hpp"
%{
#include "rsc.hpp"
%}

523
src/rsc/rsc.c Normal file
View File

@ -0,0 +1,523 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "rsc.h"
upm_result_t rsc_eeprom_read(rsc_context dev, uint16_t address, uint8_t* buf, int len, uint8_t arglen);
upm_result_t rsc_adc_write(rsc_context dev, uint8_t reg, uint8_t num_bytes, uint8_t* write_data);
upm_result_t rsc_adc_read(rsc_context dev, READING_T type, uint8_t* data);
upm_result_t rsc_add_dr_delay(rsc_context dev);
void rsc_set_access_type(rsc_context dev, ACCESS_T type);
rsc_context rsc_init(uint8_t bus, uint8_t cs_ee_pin, uint8_t cs_adc_pin) {
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
return NULL;
}
rsc_context dev = (rsc_context) malloc(sizeof(struct _rsc_context));
if (!dev) {
return NULL;
}
dev->spi_bus_number = bus;
dev->spi = mraa_spi_init(dev->spi_bus_number);
if(dev->spi == NULL)
printf("RSC: SPI context not initialized\n");
// initializing the EEPROM chip select
dev->cs_ee = mraa_gpio_init(cs_ee_pin);
if(dev->cs_ee == NULL)
printf("RSC: EEPROM GPIO context not initialized\n");
if(mraa_gpio_dir(dev->cs_ee, MRAA_GPIO_OUT) != MRAA_SUCCESS)
printf("RSC: EEPROM GPIO direction could not be set\n");
mraa_gpio_write(dev->cs_ee, 1);
// initializing the ADC chip select
dev->cs_adc = mraa_gpio_init(cs_adc_pin);
if(dev->cs_adc == NULL)
printf("RSC: ADC GPIO context not initialized\n");
if(mraa_gpio_dir(dev->cs_adc, MRAA_GPIO_OUT) != MRAA_SUCCESS)
printf("RSC: ADC GPIO direction could not be set\n");
mraa_gpio_write(dev->cs_adc, 1);
// setting the frequency and spi mode
mraa_spi_frequency(dev->spi, 1250000);
//mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
//rsc_set_access_type(dev, EEPEROM);
upm_delay_ms(100);
uint8_t sensor_name[RSC_SENSOR_NAME_LEN]={0};
rsc_get_sensor_name(dev, sensor_name);
//printf("sensor name: %s\n", sensor_name);
upm_delay_ms(10);
uint8_t serial_number[RSC_SENSOR_NUMBER_LEN]={0};
rsc_get_sensor_serial_number(dev, serial_number);
//printf("sensor serial number: %s\n", serial_number);
upm_delay_ms(10);
float range = rsc_get_pressure_range(dev);
dev->pressure_range = range;
upm_delay_ms(10);
float min_pressure = rsc_get_minimum_pressure(dev);
dev->min_pressure_val = min_pressure;
upm_delay_ms(10);
rsc_get_pressure_unit(dev);
upm_delay_ms(10);
rsc_get_pressure_type(dev);
uint8_t adc_init_values[4];
rsc_get_initial_adc_values(dev, adc_init_values);
rsc_retrieve_coefficients(dev);
//mraa_spi_frequency(dev->spi, 1250000);
//mraa_spi_mode(dev->spi, MRAA_SPI_MODE1);
//rsc_set_access_type(dev, ADC);
rsc_setup_adc(dev, adc_init_values);
rsc_set_data_rate(dev, N_DR_20_SPS);
rsc_set_mode(dev, NORMAL_MODE);
rsc_get_temperature(dev);
upm_delay_ms(50);
return dev;
}
upm_result_t rsc_close(rsc_context dev) {
free(dev);
return UPM_SUCCESS;
}
void rsc_set_access_type(rsc_context dev, ACCESS_T type) {
switch(type) {
case EEPROM:
mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
break;
case ADC:
mraa_spi_mode(dev->spi, MRAA_SPI_MODE1);
break;
default:
// default mode is EEPROM
mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
}
}
upm_result_t rsc_eeprom_read(rsc_context dev, uint16_t address, uint8_t* buf, int len, uint8_t arglen) {
uint8_t lbuf[len+arglen];
lbuf[0] = RSC_READ_EEPROM_INSTRUCTION;
lbuf[1] = address & 0xff;
lbuf[0] = ((address & RSC_EEPROM_ADDRESS_9TH_BIT_MASK) >> 5) | lbuf[0];
mraa_gpio_write(dev->cs_ee, 0);
if(mraa_spi_transfer_buf(dev->spi, lbuf, lbuf, len+arglen) != MRAA_SUCCESS) {
printf("RSC: ISsues in SPI transfer\n");
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_write(dev->cs_ee, 1);
int i=0;
for(i=arglen;i<len+arglen;i++)
buf[i-2] = lbuf[i];
return UPM_SUCCESS;
}
upm_result_t rsc_get_sensor_name(rsc_context dev, uint8_t* sensor_name) {
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_CATALOG_LISTING_MSB, sensor_name, RSC_SENSOR_NAME_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
sensor_name[RSC_SENSOR_NAME_LEN-1]='\0';
return UPM_SUCCESS;
}
upm_result_t rsc_get_sensor_serial_number(rsc_context dev, uint8_t* rsc_number) {
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_SERIAL_NO_YYYY_MSB, rsc_number, RSC_SENSOR_NUMBER_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
rsc_number[RSC_SENSOR_NUMBER_LEN-1]='\0';
return UPM_SUCCESS;
}
float rsc_get_pressure_range(rsc_context dev) {
uint32_t alt_range;
uint8_t buf[RSC_PRESSURE_RANGE_LEN]={0};
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_PRESSURE_RANGE_LSB, buf, RSC_PRESSURE_RANGE_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
alt_range = (buf[0] | (buf[1]<<8) | (buf[2]<<16) | (buf[3]<<24));
return *(float*)&alt_range;
}
float rsc_get_minimum_pressure(rsc_context dev) {
uint32_t alt_range;
uint8_t buf[RSC_PRESSURE_MINIMUM_LEN]={0};
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_PRESSURE_MINIMUM_LSB, buf, RSC_PRESSURE_MINIMUM_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
alt_range = (buf[0] | (buf[1]<<8) | (buf[2]<<16) | (buf[3]<<24));
return *(float*)&alt_range;
}
PRESSURE_U rsc_get_pressure_unit(rsc_context dev) {
uint8_t pressure_unit[RSC_PRESSURE_UNIT_LEN]={0};
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_PRESSURE_UNIT_MSB, pressure_unit, RSC_PRESSURE_UNIT_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
pressure_unit[RSC_PRESSURE_UNIT_LEN-1]='\0';
if(pressure_unit[RSC_PRESSURE_UNIT_LEN-2] == 'O')
dev->unit = INH2O;
else if(pressure_unit[RSC_PRESSURE_UNIT_LEN-2] == 'a')
if(pressure_unit[RSC_PRESSURE_UNIT_LEN-4] == 'K')
dev->unit = KPASCAL;
else if (pressure_unit[RSC_PRESSURE_UNIT_LEN-4] == 'M')
dev->unit = MPASCAL;
else
dev->unit = PASCAL;
else if(pressure_unit[RSC_PRESSURE_UNIT_LEN-2] == 'r')
if(pressure_unit[RSC_PRESSURE_UNIT_LEN-5] == 'm')
dev->unit = mBAR;
else
dev->unit = BAR;
else if(pressure_unit[RSC_PRESSURE_UNIT_LEN-2] == 'i')
dev->unit = PSI;
return dev->unit;
}
PRESSURE_T rsc_get_pressure_type(rsc_context dev) {
uint8_t type;
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_PRESSURE_REFERENCE, &type, RSC_SENSOR_TYPE_LEN, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
switch (type) {
case 'D':
dev->type = DIFFERENTIAL;
break;
case 'A':
dev->type = ABSOLUTE;
break;
case 'G':
dev->type = GAUGE;
break;
default:
dev->type = DIFFERENTIAL;
}
return dev->type;
}
upm_result_t rsc_get_initial_adc_values(rsc_context dev, uint8_t* adc_init_values) {
rsc_set_access_type(dev, EEPROM);
rsc_eeprom_read(dev, RSC_ADC_CONDIG_00, &adc_init_values[0], 1, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
upm_delay_ms(2);
rsc_eeprom_read(dev, RSC_ADC_CONDIG_01, &adc_init_values[1], 1, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
upm_delay_ms(2);
rsc_eeprom_read(dev, RSC_ADC_CONDIG_02, &adc_init_values[2], 1, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
upm_delay_ms(2);
rsc_eeprom_read(dev, RSC_ADC_CONDIG_03, &adc_init_values[3], 1, RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
return UPM_SUCCESS;
}
upm_result_t rsc_retrieve_coefficients(rsc_context dev) {
int base_address = RSC_OFFSET_COEFFICIENT_0_LSB;
uint8_t l_coeffs[RSC_COEFF_ADDRESS_SPACE_SIZE]={0};
int i,j = 0;
uint32_t temp;
rsc_set_access_type(dev, EEPROM);
for (i=0; i<RSC_COEFF_T_ROW_NO; i++) {
// 80 is the number of bytes that separate the beginning
// of the address spaces of all the 3 coefficient groups
// refer the datasheet for more info
base_address = RSC_OFFSET_COEFFICIENT_0_LSB + i*80;
rsc_eeprom_read(dev, base_address, l_coeffs, (RSC_COEFF_ADDRESS_SPACE_SIZE), RSC_EEPROM_STANDARD_ARGUMENT_LENGTH);
for(j=0; j<RSC_COEFF_T_COL_NO; j++) {
temp = l_coeffs[j*4+0] |
(l_coeffs[j*4+1]<<8) |
(l_coeffs[j*4+2]<<16) |
(l_coeffs[j*4+3]<<24);
dev->coeff_matrix[i][j] = *(float*)&temp;
}
}
return UPM_SUCCESS;
}
upm_result_t rsc_adc_write(rsc_context dev, uint8_t reg, uint8_t num_bytes, uint8_t* write_data) {
// The number of bytes to write has to be - 1,2,3,4
if(num_bytes <= 0 || num_bytes >4)
return UPM_ERROR_UNSPECIFIED;
// the ADC registers are 0,1,2,3
if(reg < 0 || reg >3)
return UPM_ERROR_UNSPECIFIED;
uint8_t tx[num_bytes+1];
tx[0] = RSC_ADC_WREG|((reg<<2)&RSC_ADC_REG_MASK)|((num_bytes-1)&RSC_ADC_NUM_BYTES_MASK);
int cnt = 0;
for(cnt=0; cnt<num_bytes; cnt++)
tx[cnt+1] = write_data[cnt];
mraa_gpio_write(dev->cs_adc, 0);
if(mraa_spi_transfer_buf(dev->spi, tx, NULL, num_bytes+1) != MRAA_SUCCESS) {
printf("RSC: ISsues in SPI transfer\n");
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_write(dev->cs_adc, 1);
return UPM_SUCCESS;
}
upm_result_t rsc_set_data_rate(rsc_context dev, RSC_DATA_RATE dr) {
dev->data_rate = dr;
switch (dr) {
case N_DR_20_SPS:
case N_DR_45_SPS:
case N_DR_90_SPS:
case N_DR_175_SPS:
case N_DR_330_SPS:
case N_DR_600_SPS:
case N_DR_1000_SPS:
rsc_set_mode(dev, NORMAL_MODE);
break;
case F_DR_40_SPS:
case F_DR_90_SPS:
case F_DR_180_SPS:
case F_DR_350_SPS:
case F_DR_660_SPS:
case F_DR_1200_SPS:
case F_DR_2000_SPS:
rsc_set_mode(dev, FAST_MODE);
break;
default:
rsc_set_mode(dev, NA_MODE);
}
return UPM_SUCCESS;
}
upm_result_t rsc_set_mode(rsc_context dev, RSC_MODE mode) {
RSC_MODE l_mode;
switch(mode) {
case NORMAL_MODE:
if(dev->data_rate < N_DR_20_SPS || dev->data_rate > N_DR_1000_SPS) {
printf("RSC: Normal mode not supported with the current selection of data rate\n");
printf("RSC: You will see erronous readings\n");
l_mode = NA_MODE;
} else
l_mode = NORMAL_MODE;
break;
case FAST_MODE:
if(dev->data_rate < F_DR_40_SPS || dev->data_rate > F_DR_2000_SPS) {
printf("RSC: Fast mode not supported with the current selection of data rate\n");
printf("RSC: You will see erronous readings\n");
l_mode = NA_MODE;
} else
l_mode = FAST_MODE;
break;
default:
l_mode = NA_MODE;
}
dev->mode = l_mode;
return UPM_SUCCESS;
}
upm_result_t rsc_adc_read(rsc_context dev, READING_T type, uint8_t* data) {
uint8_t tx[2]={0};
tx[0] = RSC_ADC_WREG|((1<<2)&RSC_ADC_REG_MASK);
tx[1] = (((dev->data_rate << RSC_DATA_RATE_SHIFT)&RSC_DATA_RATE_MASK) |
((dev->mode << RSC_OPERATING_MODE_SHIFT)&RSC_OPERATING_MODE_MASK) |
(((type&0x01)<<1)|RSC_SET_BITS_MASK));
mraa_gpio_write(dev->cs_adc, 0);
if(mraa_spi_transfer_buf(dev->spi, tx, NULL, 2) != MRAA_SUCCESS) {
printf("RSC: ISsues in SPI transfer\n");
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_write(dev->cs_adc, 1);
// delay would depend on data rate
rsc_add_dr_delay(dev);
uint8_t tx_1[4]={0x10, 0, 0, 0};
mraa_gpio_write(dev->cs_adc, 0);
if(mraa_spi_transfer_buf(dev->spi, tx_1, data, 4) != MRAA_SUCCESS) {
printf("RSC: ISsues in SPI transfer\n");
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_write(dev->cs_adc, 1);
return UPM_SUCCESS;
}
float rsc_get_temperature(rsc_context dev) {
uint8_t sec_arr[4]={0};
float temp;
rsc_set_access_type(dev, ADC);
rsc_adc_read(dev, TEMPERATURE, sec_arr);
dev->t_raw = ((sec_arr[1]<<8) | sec_arr[2]) >> 2;
temp = dev->t_raw*0.03125;
return temp;
}
float rsc_get_pressure(rsc_context dev) {
uint8_t sec_arr[4]={0};
rsc_set_access_type(dev, ADC);
rsc_adc_read(dev, PRESSURE, sec_arr);
uint32_t p_raw = (sec_arr[1]<<16)|(sec_arr[2]<<8)|sec_arr[3];
uint32_t t_raw = dev->t_raw;
float x = (dev->coeff_matrix[0][3]*t_raw*t_raw*t_raw);
float y = (dev->coeff_matrix[0][2]*t_raw*t_raw);
float z = (dev->coeff_matrix[0][1]*t_raw);
float p_int1 = p_raw - (x + y + z + dev->coeff_matrix[0][0]);
x = (dev->coeff_matrix[1][3]*t_raw*t_raw*t_raw);
y = (dev->coeff_matrix[1][2]*t_raw*t_raw);
z = (dev->coeff_matrix[1][1]*t_raw);
float p_int2 = p_int1/(x + y + z + dev->coeff_matrix[1][0]);
x = (dev->coeff_matrix[2][3]*p_int2*p_int2*p_int2);
y = (dev->coeff_matrix[2][2]*p_int2*p_int2);
z = (dev->coeff_matrix[2][1]*p_int2);
float p_comp_fs = x + y + z + dev->coeff_matrix[2][0];
float p_comp = (p_comp_fs*dev->pressure_range) + dev->min_pressure_val;
return p_comp;
}
upm_result_t rsc_setup_adc(rsc_context dev, uint8_t* adc_init_values) {
uint8_t tx=RSC_ADC_RESET_COMMAND;
rsc_set_access_type(dev, ADC);
mraa_gpio_write(dev->cs_adc, 0);
if(mraa_spi_transfer_buf(dev->spi, &tx, NULL, 1) != MRAA_SUCCESS) {
printf("RSC: ISsues in SPI transfer\n");
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(5);
uint8_t arr[4] = {adc_init_values[0], adc_init_values[1], adc_init_values[2], adc_init_values[3]};
rsc_adc_write(dev, 0, 4, arr);
mraa_gpio_write(dev->cs_adc, 1);
upm_delay_ms(5);
return UPM_SUCCESS;
}
upm_result_t rsc_add_dr_delay(rsc_context dev) {
float delay = 0;
switch(dev->data_rate){
case N_DR_20_SPS:
delay = MSEC_PER_SEC/20;
break;
case N_DR_45_SPS:
delay = MSEC_PER_SEC/45;
break;
case N_DR_90_SPS:
delay = MSEC_PER_SEC/90;
break;
case N_DR_175_SPS:
delay = MSEC_PER_SEC/175;
break;
case N_DR_330_SPS:
delay = MSEC_PER_SEC/330;
break;
case N_DR_600_SPS:
delay = MSEC_PER_SEC/600;
break;
case N_DR_1000_SPS:
delay = MSEC_PER_SEC/1000;
break;
case F_DR_40_SPS:
delay = MSEC_PER_SEC/40;
break;
case F_DR_90_SPS:
delay = MSEC_PER_SEC/90;
break;
case F_DR_180_SPS:
delay = MSEC_PER_SEC/180;
break;
case F_DR_350_SPS:
delay = MSEC_PER_SEC/350;
break;
case F_DR_660_SPS:
delay = MSEC_PER_SEC/660;
break;
case F_DR_1200_SPS:
delay = MSEC_PER_SEC/1200;
break;
case F_DR_2000_SPS:
delay = MSEC_PER_SEC/2000;
break;
default:
delay = 50;
}
upm_delay_ms((int)delay + 2);
return UPM_SUCCESS;
}

191
src/rsc/rsc.cxx Normal file
View File

@ -0,0 +1,191 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <string>
#include <stdexcept>
#include "rsc.hpp"
using namespace upm;
using namespace std;
RSC::RSC(uint8_t bus, uint8_t cs_ee_pin, uint8_t cs_adc_pin) :
m_rsc(rsc_init(bus, cs_ee_pin, cs_adc_pin))
{
if(!m_rsc)
throw std::runtime_error(std::string(__FUNCTION__) +
": rsc_init failed");
}
RSC::~RSC()
{
rsc_close(m_rsc);
}
string RSC::getSensorName()
{
uint8_t sensorName[RSC_SENSOR_NAME_LEN]={0};
if(rsc_get_sensor_name(m_rsc, sensorName) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to read the sensor name");
}
std::string str((const char*)sensorName);
return str;
}
string RSC::getSensorSerialNumber()
{
uint8_t serialNumber[RSC_SENSOR_NUMBER_LEN]={0};
if(rsc_get_sensor_serial_number(m_rsc, serialNumber) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to read the sensor serial number");
}
std::string str((const char*)serialNumber);
return str;
}
float RSC::getPressureRange()
{
return rsc_get_pressure_range(m_rsc);
}
float RSC::getMinimumPressure()
{
return rsc_get_minimum_pressure(m_rsc);
}
string RSC::getPressureUnit()
{
string s_unit;
PRESSURE_U unit = rsc_get_pressure_unit(m_rsc);
switch(unit){
case PASCAL:
s_unit = "Pascal";
break;
case KPASCAL:
s_unit = "Kilo Pascal";
break;
case MPASCAL:
s_unit = "Mega Pascal";
break;
case PSI:
s_unit = "PSI";
break;
case INH2O:
s_unit = "inH2O";
break;
case BAR:
s_unit = "Bar";
break;
case mBAR:
s_unit = "milli Bar";
break;
default:
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to read the pressure unit from sensor");
}
return s_unit;
}
string RSC::getPressureType()
{
string s_type;
PRESSURE_T type = rsc_get_pressure_type(m_rsc);
switch(type){
case DIFFERENTIAL:
s_type = "Differential";
break;
case ABSOLUTE:
s_type = "Absolute";
break;
case GAUGE:
s_type = "Gauge";
break;
default:
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to read the pressure type from sensor");
}
return s_type;
}
uint8_t *RSC::getInitialADCState()
{
uint8_t initialState[4]={0,0,0,0};
if(rsc_get_initial_adc_values(m_rsc, initialState) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to read the ADC state from the eeprom");
}
int cnt = 0;
for (cnt = 0; cnt<4; cnt++)
m_adc_coeff[cnt]=initialState[cnt];
return m_adc_coeff;
}
void RSC::updateCoefficients()
{
if(rsc_retrieve_coefficients(m_rsc) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to retrieve ADC Coefficients from the eeprom");
}
}
void RSC::setupADC(uint8_t* adc_init_values)
{
if(rsc_setup_adc(m_rsc, adc_init_values) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to setup the ADC");
}
}
float RSC::getTemperature()
{
return rsc_get_temperature(m_rsc);
}
float RSC::getPressure()
{
return rsc_get_pressure(m_rsc);
}
void RSC::setMode(RSC_MODE mode)
{
if(rsc_set_mode(m_rsc, mode) != UPM_SUCCESS){
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to set the ADC mode");
}
}
void RSC::setDataRate(RSC_DATA_RATE dr)
{
if(rsc_set_data_rate(m_rsc, dr) != UPM_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": Unable to set the ADC data rate");
}
}

219
src/rsc/rsc.h Normal file
View File

@ -0,0 +1,219 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include "upm.h"
#include "mraa/spi.h"
#include "mraa/gpio.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "rsc_regs.h"
/**
* @file rsc.h
* @library rsc
* @brief C API for the rsc driver
*
* @include rsc.c
*/
/**
* Device context
*/
typedef struct _rsc_context {
mraa_spi_context spi;
mraa_gpio_context cs_ee;
mraa_gpio_context cs_adc;
uint8_t spi_bus_number;
float coeff_matrix[RSC_COEFF_T_ROW_NO][RSC_COEFF_T_COL_NO];
PRESSURE_U unit;
PRESSURE_T type;
float pressure_range;
float min_pressure_val;
RSC_DATA_RATE data_rate;
RSC_MODE mode;
uint16_t t_raw;
} *rsc_context;
/**
* RSC initialization.
*
* This device supports SPI. The sensor has two chip select
* pins since there are two ways to access content on the
* sensor - EEPROM/ADC. We will not be using the SPI CS here
* because that would work for all SPI operations. Hence, you are
* expected to initialize any 2 gpio pins for CS by providing the
* pin numbers.
*
* @param bus SPI bus to use.
* @param cs_ee_pin The CS pin for accessing the EEPROM
* @param cs_adc_pin The CS pin for accessing the ADC
* @return The device context, or NULL if an error occurred.
*/
rsc_context rsc_init(uint8_t bus, uint8_t cs_ee_pin, uint8_t cs_adc_pin);
/**
* RSC Close function
*
* @param dev The device context
*/
upm_result_t rsc_close(rsc_context dev);
/**
* This function fills up a character array provided to it with
* the sensor name that it reads from the EEPROM.
* NOTE: The length of the array will always have to be RSC_SENSOR_NAME_LEN
*
* @param dev The device context
* @param sensor_name Pointer to a uint8_t array with length
* RSC_SENSOR_NAME_LEN. This array will be filled up with the sensor name
* read from the EEPROM.
* @return UPM result.
*/
upm_result_t rsc_get_sensor_name(rsc_context dev, uint8_t* sensor_name);
/**
* This function fills up a character array provided to it with
* the sensor serial number that it reads from the EEPROM.
* NOTE: The length of the array will always have to be RSC_SENSOR_NUMBER_LEN
*
* @param dev The device context
* @param sensor_name Pointer to a uint8_t array with length
* RSC_SENSOR_NUMBER_LEN. This array will be filled up with the serial number
* @return UPM result.
*/
upm_result_t rsc_get_sensor_serial_number(rsc_context dev, uint8_t* rsc_number);
/**
* This function reads the EEPROM to retrieve the pressure range for the
* particular RSC device.
*
* @param dev The device context
* @return Sensor pressure range in float
*/
float rsc_get_pressure_range(rsc_context dev);
/**
* This function reads the EEPROM to retrieve the minimum pressure that
* the sensor can read.
*
* @param dev The device context
* @return Minimum pressure sensor can read in float
*/
float rsc_get_minimum_pressure(rsc_context dev);
/**
* This function reads the EEPROM to retrieve the pressure units that
* the pressure is read in
*
* @param dev The device context
* @return enum PRESSURE_U
*/
PRESSURE_U rsc_get_pressure_unit(rsc_context dev);
/**
* This function reads the EEPROM to retrieve the sensor pressure type
*
* @param dev The device context
* @return enum PRESSURE_T
*/
PRESSURE_T rsc_get_pressure_type(rsc_context dev);
/**
* This function reads the EEPROM to extract the values with which the
* ADC has to be initialized.
* NOTE: The length of the array will always be 4
*
* @param dev The device context
* @param adc_init_values uint8_t pointer to an array containing the
* initial values for the ADC
* @return UPM result.
*/
upm_result_t rsc_get_initial_adc_values(rsc_context dev, uint8_t* adc_init_values);
/**
* This function is used to retrieve the coefficients from the EEPROM.
* Once retrieved, the function updates a 2 dimensional array in the
* sensor context with the latest values. This function doesn't return
* the coefficient values.
*
* @param dev The device context
* @return UPM result.
*/
upm_result_t rsc_retrieve_coefficients(rsc_context dev);
/**
* This function sets up the initial values in the ADC and also
* sets is to a default data rate - normal with 20 samples per second
*
* @param dev The device context
* @return UPM result.
*/
upm_result_t rsc_setup_adc(rsc_context dev, uint8_t* adc_init_values);
/**
* Function to get the compensated temperature as read by the sensor.
*
* @param dev The device context
* @return float temperature in degree Celsius
*/
float rsc_get_temperature(rsc_context dev);
/**
* Function to get the compensated pressure as read by the sensor.
*
* @param dev The device context
* @return float pressure (units inH2O)
*/
float rsc_get_pressure(rsc_context dev);
/**
* Function to set the mode of the sensor.
*
* @param dev The device context
* @param mode mode of the sensor
* @return UPM result.
*/
upm_result_t rsc_set_mode(rsc_context dev, RSC_MODE mode);
/**
* Function to set the data rate of the sensor.
*
* @param dev The device context
* @param dr data rate of the sensor
* @return UPM result.
*/
upm_result_t rsc_set_data_rate(rsc_context dev, RSC_DATA_RATE dr);
#ifdef __cplusplus
}
#endif

247
src/rsc/rsc.hpp Normal file
View File

@ -0,0 +1,247 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "rsc.h"
namespace upm {
/**
* @brief Honeywell RSC TruStability Pressure and Temperature Sensors
* @defgroup rsc libupm-rsc
* @ingroup honeywell spi pressure temperature
*/
/**
* @library rsc
* @sensor rsc
* @comname Honeywell TruStability Boardmount Pressure Sensors
* @altname TruStability Pressure and Temperature Sensors
* @type pressure temperature
* @man honeywell
* @con spi
* @web https://sensing.honeywell.com/honeywell-sensing-trustability-rsc-series-data-sheet-32321348-b-en.pdf
*
* @brief Description for the RSC TruStability line
*
* The RSC Series is a piezoresistive silicon pressure sensor
* offering a digital output for reading pressure over the specified
* full scale pressure span and temperature range. It is calibrated
* and temperature compensated for sensor offset, sensitivity,
* temperature effects, and non-linearity using a 24-bit analog-todigital
* converter with integrated EEPROM. Pressure data may
* be acquired at rates between 20 and 2000 samples per second
* over an SPI interface. It is intended for use with non-corrosive,
* non-ionic gases, such as air and other dry gases, designed and
* manufactured according to ISO 9001 standards, and is REACH
* and RoHS compliant.
*
* Most of the functionality available on this chip has been implemented.
* The driver calculates the compensated pressure and temperature values
* based on the information provided in the datasheet. The user must not mess
* around with the coefficient and adc init value readings from the EEPROM as
* these are used to calculate the compensated pressure and temperature values.
*
* In order to get the sensor to work properly on an Edison, you would need to
* turn off the Edison SPI power management, this can be done with the command:
* echo on > /sys/devices/pci0000\:00/0000\:00\:07.1/power/control
*
* You might have to use external pull up resistors on all the lines.
* More info about this has been provided in the datasheet with a table and
* a diagram.
*
*/
class RSC {
public:
/**
* @brief Default constructor for rsc
*
* This device supports SPI. The sensor has two chip select
* pins since there are two ways to access content on the
* sensor - EEPROM/ADC. We will not be using the SPI CS here
* because that would work for all SPI operations. Hence, you are
* expected to initialize any 2 gpio pins for CS by providing the
* pin numbers.
*
* @param bus SPI bus to use.
* @param cs_ee_pin The CS pin for accessing the EEPROM
* @param cs_adc_pin The CS pin for accessing the ADC
*/
RSC(uint8_t bus, uint8_t cs_ee_pin, uint8_t cs_adc_pin);
/**
* rsc destructor
*/
~RSC();
/**
* This function provides the sensor name as a string to
* the user.
*
* @return std::string sensor name
*/
std::string getSensorName();
/**
* This function provides the sensor serial number as a
* string to the user.
*
* @return std::string sensor serial number
*/
std::string getSensorSerialNumber();
/**
* This function provides the pressure range which the
* sensor can read out. This will vary for the different
* kinds of RSC sensors. This value is read from the EEPROM
*
* @return float Total sensor pressure range
*/
float getPressureRange();
/**
* This function provides the minimum pressure which the
* sensor can read out. This will vary for the different
* kinds of RSC sensors. This value is read from the EEPROM
*
* @return float Sensor minimum pressure
*/
float getMinimumPressure();
/**
* This function gets the units that the particular RSC
* sensor being used reads out the pressure data in.
* Following are the possible units data can be read out
* in:
* 1. Pascal
* 2. Kilo Pascal
* 3. Mega Pascal
* 4. PSI
* 5. inH2O
* 6. Bar
* 7. milli Bar
*
* This info can be retrieved from the EEPROM
*
* @return std::string pressure units
*/
std::string getPressureUnit();
/**
* Function returns the type of RSC pressure sensor being
* used. This info is available in the EEPROM.
* Types:
* 1. Differential
* 2. Absolute
* 3. Gauge
*
* @return std::string sensor type
*/
std::string getPressureType();
/**
* Function returns the initial state that the ADC
* registers need to be set to. This info is retrieved
* from the EEPROM.
*
* @return std::string sensor type
*/
uint8_t *getInitialADCState();
/**
* Function used to update the coefficients. This function
* doesn't return the coefficent values. Intstead, it updates
* the 2-D array with the coefficient values read from the
* EEPROM. This function is mostly for internal use only.
*/
void updateCoefficients();
/**
* Function used to set up the ADC with the initial values
* of the ADC registers read from the EEPROM.
*
* @param adc_init_values pointer to uint8_t array containing
* the initial ADC values
*/
void setupADC(uint8_t* adc_init_values);
/**
* Function to get the compensated temperature value.
*
* @return float compensated temperature value
*/
float getTemperature();
/**
* Function to get the compensated pressure value
*
* @return float compensated pressure value
*/
float getPressure();
/**
* Function to set the mode for the RSC sensor:
* There are 2 types of modes available:
*
* 1. Normal Mode - 256 KHz
* 2. Fast Mode - 512 KHz
*
* @return mode enum of type RSC_MODE
*/
void setMode(RSC_MODE mode);
/**
* Function to set the data rate for the RSC sensor:
* Following are the different data rates available:
*
* In Normal Mode
* 1. 20 SPS
* 2. 45 SPS
* 3. 90 SPS
* 4. 175 SPS
* 5. 330 SPS
* 6. 600 SPS
* 7. 1000 SPS
*
* In Fast Mode
* 1. 40 SPS
* 2. 90 SPS
* 3. 180 SPS
* 4. 350 SPS
* 5. 660 SPS
* 6. 1200 SPS
* 7. 2000 SPS
*
* SPS - Samples per Second
*
* @return dr enum of type RSC_DATA_RATE
*/
void setDataRate(RSC_DATA_RATE dr);
private:
rsc_context m_rsc;
uint8_t m_adc_coeff[4];
};
}

249
src/rsc/rsc_regs.h Normal file
View File

@ -0,0 +1,249 @@
/*
* Author: Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
/*
* The following section lists the EEPROM Addresses
*/
/*
* RSC EEPROM Catalog listing
* This part in the EEPROM stores the ascii representation of the sensor chip
* number
*/
#define RSC_CATALOG_LISTING_MSB 0
#define RSC_CATALOG_LISTING_LSB 15
/*
* RSC EEPROM Serial Number addresses
*/
#define RSC_SERIAL_NO_YYYY_MSB 16
#define RSC_SERIAL_NO_YYYY_LSB 19
#define RSC_SERIAL_NO_DDD_MSB 20
#define RSC_SERIAL_NO_DDD_LSB 22
#define RSC_SERIAL_NO_XXXX_MSB 23
#define RSC_SERIAL_NO_XXXX_LSB 26
/*
* This area in the EEPROM contains the sensor's pressure range in float
*/
#define RSC_PRESSURE_RANGE_LSB 27
#define RSC_PRESSURE_RANGE_MSB 30
/*
* This part in the EEPROM contains the lower pressure limit readable
* Value is stored float
*/
#define RSC_PRESSURE_MINIMUM_LSB 31
#define RSC_PRESSURE_MINIMUM_MSB 34
/*
* Unit of measurement of pressure for this particular sensor
* Ex: Pascal, Bar, PSI, inH2O
*/
#define RSC_PRESSURE_UNIT_MSB 35
#define RSC_PRESSURE_UNIT_LSB 39
/*
* Ex: Differential, Gauge, absolute
*/
#define RSC_PRESSURE_REFERENCE 40
/*
* ADC Configuration math
*/
#define RSC_ADC_CONDIG_00 61
#define RSC_ADC_CONDIG_01 63
#define RSC_ADC_CONDIG_02 65
#define RSC_ADC_CONDIG_03 67
/*
* Offset Coefficient matrix
*/
#define RSC_OFFSET_COEFFICIENT_0_LSB 130
#define RSC_OFFSET_COEFFICIENT_0_MSB 133
#define RSC_OFFSET_COEFFICIENT_1_LSB 134
#define RSC_OFFSET_COEFFICIENT_1_MSB 137
#define RSC_OFFSET_COEFFICIENT_2_LSB 138
#define RSC_OFFSET_COEFFICIENT_2_MSB 141
#define RSC_OFFSET_COEFFICIENT_3_LSB 142
#define RSC_OFFSET_COEFFICIENT_3_MSB 145
/*
* Span Coefficient Matrix
*/
#define RSC_SPAN_COEFFICIENT_0_LSB 210
#define RSC_SPAN_COEFFICIENT_0_MSB 213
#define RSC_SPAN_COEFFICIENT_1_LSB 214
#define RSC_SPAN_COEFFICIENT_1_MSB 217
#define RSC_SPAN_COEFFICIENT_2_LSB 218
#define RSC_SPAN_COEFFICIENT_2_MSB 221
#define RSC_SPAN_COEFFICIENT_3_LSB 222
#define RSC_SPAN_COEFFICIENT_3_MSB 225
/*
* Shape Coefficient Matrix
*/
#define RSC_SHAPE_COEFFICIENT_0_LSB 290
#define RSC_SHAPE_COEFFICIENT_0_MSB 293
#define RSC_SHAPE_COEFFICIENT_1_LSB 294
#define RSC_SHAPE_COEFFICIENT_1_MSB 297
#define RSC_SHAPE_COEFFICIENT_2_LSB 298
#define RSC_SHAPE_COEFFICIENT_2_MSB 301
#define RSC_SHAPE_COEFFICIENT_3_LSB 302
#define RSC_SHAPE_COEFFICIENT_3_MSB 305
/*
* Checksum addresses
*/
#define RSC_CHECKSUM_LSB 450
#define RSC_CHECKSUM_MSB 451
/*
* The following section contains a list of variations useful for EEPROM
* calculations and reads.
*/
#define RSC_EEPROM_ADDRESS_SPACE_SIZE 512
#define RSC_EEPROM_STANDARD_ARGUMENT_LENGTH 2
#define RSC_READ_EEPROM_INSTRUCTION 0x03
#define RSC_EEPROM_ADDRESS_LOWER_BYTE_MASK 0xff
#define RSC_EEPROM_ADDRESS_9TH_BIT_MASK 0x100
#define RSC_SENSOR_NAME_LEN 16
#define RSC_SENSOR_NUMBER_LEN 12
#define RSC_PRESSURE_RANGE_LEN 4
#define RSC_PRESSURE_MINIMUM_LEN 4
#define RSC_PRESSURE_UNIT_LEN 6
#define RSC_SENSOR_TYPE_LEN 1
// total types of coefficients
#define RSC_COEFF_T_ROW_NO 3
// total no of coefficients in each type
#define RSC_COEFF_T_COL_NO 4
// this can be calculated by using the LSB address of the 0th coefficient
// and the MSB of the 3rd coefficient
#define RSC_COEFF_ADDRESS_SPACE_SIZE 16
/*
* The following section lists ADC Commands/Registers
*/
#define RSC_ADC_RESET_COMMAND 0x06
#define RSC_DATA_RATE_SHIFT 5
#define RSC_DATA_RATE_MASK 0xe0
#define RSC_ADC_REG_MASK 0x0C
#define RSC_ADC_NUM_BYTES_MASK 0x03
#define RSC_OPERATING_MODE_MASK 0x18
#define RSC_OPERATING_MODE_SHIFT 3
#define RSC_SET_BITS_MASK 0x04
#define RSC_ADC_WREG 0x40
#define MSEC_PER_SEC 1000
#define RSC_CREATE_WREG_COMMAND(x,y,z) (x|((y<<2)&RSC_ADC_REG_MASK)|(z&RSC_ADC_NUM_BYTES_MASK))
/*
* Read/Write Enum
*/
typedef enum {
READ = 0,
WRITE } RSC_ADC_TX;
/*
* Enum for the datarates supported by the sensor
* N/F - Normal/Fast - 256 KHz/512 KHz
* DR - Data Rate
* SPS - Samples per second
*/
typedef enum {
N_DR_20_SPS = 0,
N_DR_45_SPS,
N_DR_90_SPS,
N_DR_175_SPS,
N_DR_330_SPS,
N_DR_600_SPS,
N_DR_1000_SPS,
N_DR_NA,
F_DR_40_SPS,
F_DR_90_SPS,
F_DR_180_SPS,
F_DR_350_SPS,
F_DR_660_SPS,
F_DR_1200_SPS,
F_DR_2000_SPS,
F_DR_NA } RSC_DATA_RATE;
/*
* Enum for modes supported by the RSC sensor
*/
typedef enum {
NORMAL_MODE = 0,
NA_MODE,
FAST_MODE } RSC_MODE;
/*
* Enum for the different pressure units supported by the rsc class of sensors
*/
typedef enum {
PASCAL = 0,
KPASCAL,
MPASCAL,
PSI,
INH2O,
BAR,
mBAR } PRESSURE_U;
/*
* Enum for types of pressure that the rsc sensor class can calculate
*/
typedef enum {
DIFFERENTIAL = 0,
ABSOLUTE,
GAUGE } PRESSURE_T;
/*
* Enum for types of coefficients available from the rsc sensors
*/
typedef enum {
OFFSET = 0,
SPAN,
SHAPE } COEFFICIENT_T;
/*
* Enum for pressure/temperature reading
*/
typedef enum {
PRESSURE = 0,
TEMPERATURE } READING_T;
/*
* Enum to access EEPROM/ADC
*/
typedef enum {
EEPROM = 0,
ADC } ACCESS_T;