bno055: C port; C++ wraps C

The API has been changed in some cases - see the apichanges.md
document.

In addition, this driver uses a new upm_vectortypes.i SWIG interface
file to provide a mechanism for methods that return a vector of floats
and ints instead of a pointer to an array.

This works much nicer than C array pointers, and results in Python/JS/Java
code that looks much more "natural" to the language in use.

The Python, JS, and Java examples have been changed to use these
methods.  Support for the "old" C-style pointer methods are still
provided for backward compatibility with existing code.

As an example - to retrieve the x, y, and z data for Euler Angles from
the bno055, the original python code would look something like:

       ...
       x = sensorObj.new_floatp()
       y = sensorObj.new_floatp()
       z = sensorObj.new_floatp()
       ...
       sensor.getEulerAngles(x, y, z)
       ...
       print("Euler: Heading:", sensorObj.floatp_value(x), end=' ')
       print(" Roll:", sensorObj.floatp_value(y), end=' ')
       ...

Now the equivalent code is simply:

       floatData = sensor.getEulerAngles()
       print("Euler: Heading:", floatData[0], ...
       print(" Roll:", floatData[1], end=' ')
       ...

Additionally, interrupt handling for Java is now implemented
completely in the C++ header file now rather than the .cxx file, so no
special SWIG processing is required anymore. See Issue #518 .

Signed-off-by: Jon Trulson <jtrulson@ics.com>
This commit is contained in:
Jon Trulson
2017-03-07 12:43:44 -07:00
parent 2bdde21a2f
commit d4b536b593
16 changed files with 3382 additions and 2155 deletions

View File

@ -149,6 +149,7 @@ add_example (hmc5883l)
add_example (wfs)
add_example (enc03r)
add_example (nunchuck)
add_example (bno055)
# Custom examples
add_custom_example (nmea_gps_i2c-example-c nmea_gps_i2c.c nmea_gps)

119
examples/c/bno055.c Normal file
View File

@ -0,0 +1,119 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <stdbool.h>
#include <stdio.h>
#include <upm_utilities.h>
#include <signal.h>
#include "bno055.h"
bool shouldRun = true;
void sig_handler(int signo)
{
if (signo == SIGINT)
shouldRun = false;
}
int main(int argc, char **argv)
{
signal(SIGINT, sig_handler);
//! [Interesting]
// Initialize a BNO055 using default parameters (bus 0, addr
// 0x28). The default running mode is NDOF absolute orientation
// mode.
bno055_context sensor = bno055_init(0, BNO055_DEFAULT_ADDR);
if (!sensor)
{
printf("bno055_init() failed.\n");
return 1;
}
// First we need to calibrate....
printf("First we need to calibrate. 4 numbers will be output every \n"
"second for each sensor. 0 means uncalibrated, and 3 means \n"
"fully calibrated.\n"
"See the UPM documentation on this sensor for instructions on \n"
"what actions are required to calibrate.\n");
// do the calibration...
while (shouldRun && !bno055_is_fully_calibrated(sensor))
{
int mag, acc, gyr, sys;
bno055_get_calibration_status(sensor, &mag, &acc, &gyr, &sys);
printf("Magnetometer: %d Accelerometer: %d Gyroscope: %d System: %d\n",
mag, acc, gyr, sys);
upm_delay(1);
}
printf("\nCalibration complete.\n\n");
// now output various fusion data every 250 milliseconds
while (shouldRun)
{
float w, x, y, z;
if (bno055_update(sensor))
{
printf("bno055_update() failed.\n");
return 1;
}
bno055_get_euler_angles(sensor, &x, &y, &z);
printf("Euler: Heading: %f Roll: %f Pitch: %f degrees\n",
x, y, z);
bno055_get_quaternions(sensor, &w, &x, &y, &z);
printf("Quaternion: W: %f X: %f Y: %f Z: %f\n",
w, x, y, z);
bno055_get_linear_acceleration(sensor, &x, &y, &z);
printf("Linear Acceleration: X: %f Y: %f Z: %f m/s^2\n",
x, y, z);
bno055_get_gravity_vectors(sensor, &x, &y, &z);
printf("Gravity Vector: X: %f Y: %f Z: %f m/s^2\n",
x, y, z);
printf("\n");
upm_delay_ms(250);
}
//! [Interesting]
printf("Exiting...\n");
bno055_close(sensor);
return 0;
}

View File

@ -1,6 +1,8 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
* Copyright (c) 2016-2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@ -45,12 +47,12 @@ public class BNO055_Example
while (!sensor.isFullyCalibrated())
{
int calData[] = sensor.getCalibrationStatus();
upm_bno055.intVector calData = sensor.getCalibrationStatus();
System.out.println("Magnetometer: " + calData[0]
+ " Accelerometer: " + calData[1]
+ " Gyroscope: " + calData[2]
+ " System: " + calData[3]);
System.out.println("Magnetometer: " + calData.get(0)
+ " Accelerometer: " + calData.get(1)
+ " Gyroscope: " + calData.get(2)
+ " System: " + calData.get(3));
Thread.sleep(1000);
@ -65,30 +67,30 @@ public class BNO055_Example
// update our values from the sensor
sensor.update();
float dataE[] = sensor.getEulerAngles();
System.out.println("Euler: Heading: " + dataE[0] +
" Roll: " + dataE[1] +
" Pitch: " + dataE[2] +
" degrees");
upm_bno055.floatVector data = sensor.getEulerAngles();
float dataQ[] = sensor.getQuaternions();
System.out.println("Quaternion: W: " + dataQ[0] +
" X:" + dataQ[1] +
" Y: " + dataQ[2] +
" Z: " + dataQ[3]);
System.out.println("Euler: Heading: " + data.get(0)
+ " Roll: " + data.get(1)
+ " Pitch: " + data.get(2)
+ " degrees");
float dataL[] = sensor.getLinearAcceleration();
System.out.println("Linear Acceleration: X: " + dataL[0] +
" Y: " + dataL[1] +
" Z: " + dataL[2] +
" m/s^2");
data = sensor.getQuaternions();
System.out.println("Quaternion: W: " + data.get(0)
+ " X: " + data.get(1)
+ " Y: " + data.get(2)
+ " Z: " + data.get(3));
float dataG[] = sensor.getGravityVectors();
System.out.println("Gravity Vector: X: " + dataG[0] +
" Y: " + dataG[1] +
" Z: " + dataG[2] +
" m/s^2");
data = sensor.getLinearAcceleration();
System.out.println("Linear Acceleration: X: " + data.get(0)
+ " Y: " + data.get(1)
+ " Z: " + data.get(2)
+ " m/s^2");
data = sensor.getGravityVectors();
System.out.println("Gravity Vector: X: " + data.get(0)
+ " Y: " + data.get(1)
+ " Z: " + data.get(2)
+ " m/s^2");
System.out.println();
Thread.sleep(250);

View File

@ -1,6 +1,8 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
* Copyright (c) 2016-2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@ -30,16 +32,6 @@ var sensorObj = require('jsupm_bno055');
// mode.
var sensor = new sensorObj.BNO055();
var mag = new sensorObj.new_intp();
var acc = new sensorObj.new_intp();
var gyr = new sensorObj.new_intp();
var syst = new sensorObj.new_intp();
var w = new sensorObj.new_floatp();
var x = new sensorObj.new_floatp();
var y = new sensorObj.new_floatp();
var z = new sensorObj.new_floatp();
console.log("First we need to calibrate. 4 numbers will be output every");
console.log("second for each sensor. 0 means uncalibrated, and 3 means");
console.log("fully calibrated.");
@ -61,11 +53,11 @@ var calInterval = setInterval(function()
}
else
{
sensor.getCalibrationStatus(mag, acc, gyr, syst);
console.log("Magnetometer: " + sensorObj.intp_value(mag) +
" Accelerometer: " + sensorObj.intp_value(acc) +
" Gyroscope: " + sensorObj.intp_value(gyr) +
" System: " + sensorObj.intp_value(syst));
var intData = sensor.getCalibrationStatus();
console.log("Magnetometer: " + intData.get(0) +
" Accelerometer: " + intData.get(1) +
" Gyroscope: " + intData.get(2) +
" System: " + intData.get(3));
}
}, 1000);
@ -76,29 +68,29 @@ function outputData()
{
sensor.update();
sensor.getEulerAngles(x, y, z);
console.log("Euler: Heading: " + sensorObj.floatp_value(x) +
" Roll: " + sensorObj.floatp_value(y) +
" Pitch: " + sensorObj.floatp_value(z) +
" degrees");
var floatData = sensor.getEulerAngles();
console.log("Euler: Heading: " + floatData.get(0)
+ " Roll: " + floatData.get(1)
+ " Pitch: " + floatData.get(2)
+ " degrees");
sensor.getQuaternions(w, x, y, z);
console.log("Quaternion: W: " + sensorObj.floatp_value(w) +
" X:" + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z));
floatData = sensor.getQuaternions();
console.log("Quaternion: W: " + floatData.get(0)
+ " X:" + floatData.get(1)
+ " Y: " + floatData.get(2)
+ " Z: " + floatData.get(3));
sensor.getLinearAcceleration(x, y, z);
console.log("Linear Acceleration: X: " + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z) +
" m/s^2");
floatData = sensor.getLinearAcceleration();
console.log("Linear Acceleration: X: " + floatData.get(0)
+ " Y: " + floatData.get(1)
+ " Z: " + floatData.get(2)
+ " m/s^2");
sensor.getGravityVectors(x, y, z);
console.log("Gravity Vector: X: " + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z) +
" m/s^2");
floatData = sensor.getGravityVectors();
console.log("Gravity Vector: X: " + floatData.get(0)
+ " Y: " + floatData.get(1)
+ " Z: " + floatData.get(2)
+ " m/s^2");
console.log("");
};

View File

@ -1,6 +1,8 @@
#!/usr/bin/python
# Author: Jon Trulson <jtrulson@ics.com>
# Copyright (c) 2016 Intel Corporation.
# Copyright (c) 2016-2017 Intel Corporation.
#
# The MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
@ -32,7 +34,8 @@ def main():
sensor = sensorObj.BNO055()
## Exit handlers ##
# This function stops python from printing a stacktrace when you hit control-C
# This function stops python from printing a stacktrace when you
# hit control-C
def SIGINTHandler(signum, frame):
raise SystemExit
@ -45,16 +48,6 @@ def main():
atexit.register(exitHandler)
signal.signal(signal.SIGINT, SIGINTHandler)
mag = sensorObj.new_intp()
acc = sensorObj.new_intp()
gyr = sensorObj.new_intp()
syst = sensorObj.new_intp()
w = sensorObj.new_floatp()
x = sensorObj.new_floatp()
y = sensorObj.new_floatp()
z = sensorObj.new_floatp()
print("First we need to calibrate. 4 numbers will be output every")
print("second for each sensor. 0 means uncalibrated, and 3 means")
print("fully calibrated.")
@ -63,44 +56,54 @@ def main():
print()
while (not sensor.isFullyCalibrated()):
sensor.getCalibrationStatus(mag, acc, gyr, syst)
print("Magnetometer:", sensorObj.intp_value(mag), end=' ')
print(" Accelerometer:", sensorObj.intp_value(acc), end=' ')
print(" Gyroscope:", sensorObj.intp_value(gyr), end=' ')
print(" System:", sensorObj.intp_value(syst), end=' ')
intData = sensor.getCalibrationStatus()
print("Magnetometer:", intData[0], end=' ')
print(" Accelerometer:", intData[1], end=' ')
print(" Gyroscope:", intData[2], end=' ')
print(" System:", intData[3])
time.sleep(1)
print()
print("Calibration complete.")
print()
# example - read calibration data, sleep and then write it
# print("Reading calibration data....")
# byteData = sensor.readCalibrationData()
# print("Read data successfully.")
# print("Writing calibration data...")
# time.sleep(1)
# sensor.writeCalibrationData(byteData)
# print("Success!")
# time.sleep(3)
# now output various fusion data every 250 milliseconds
while (True):
sensor.update()
sensor.getEulerAngles(x, y, z)
print("Euler: Heading:", sensorObj.floatp_value(x), end=' ')
print(" Roll:", sensorObj.floatp_value(y), end=' ')
print(" Pitch:", sensorObj.floatp_value(z), end=' ')
floatData = sensor.getEulerAngles()
print("Euler: Heading:", floatData[0], end=' ')
print(" Roll:", floatData[1], end=' ')
print(" Pitch:", floatData[2], end=' ')
print(" degrees")
sensor.getQuaternions(w, x, y, z)
print("Quaternion: W:", sensorObj.floatp_value(w), end=' ')
print(" X:", sensorObj.floatp_value(x), end=' ')
print(" Y:", sensorObj.floatp_value(y), end=' ')
print(" Z:", sensorObj.floatp_value(z))
floatData = sensor.getQuaternions()
print("Quaternion: W:", floatData[0], end=' ')
print(" X:", floatData[1], end=' ')
print(" Y:", floatData[2], end=' ')
print(" Z:", floatData[3])
sensor.getLinearAcceleration(x, y, z)
print("Linear Acceleration: X:", sensorObj.floatp_value(x), end=' ')
print(" Y:", sensorObj.floatp_value(y), end=' ')
print(" Z:", sensorObj.floatp_value(z), end=' ')
floatData = sensor.getLinearAcceleration()
print("Linear Acceleration: X:", floatData[0], end=' ')
print(" Y:", floatData[1], end=' ')
print(" Z:", floatData[2], end=' ')
print(" m/s^2")
sensor.getGravityVectors(x, y, z)
print("Gravity Vector: X:", sensorObj.floatp_value(x), end=' ')
print(" Y:", sensorObj.floatp_value(y), end=' ')
print(" Z:", sensorObj.floatp_value(z), end=' ')
floatData = sensor.getGravityVectors()
print("Gravity Vector: X:", floatData[0], end=' ')
print(" Y:", floatData[1], end=' ')
print(" Z:", floatData[2], end=' ')
print(" m/s^2")
print()