bno055: C port; C++ wraps C

The API has been changed in some cases - see the apichanges.md
document.

In addition, this driver uses a new upm_vectortypes.i SWIG interface
file to provide a mechanism for methods that return a vector of floats
and ints instead of a pointer to an array.

This works much nicer than C array pointers, and results in Python/JS/Java
code that looks much more "natural" to the language in use.

The Python, JS, and Java examples have been changed to use these
methods.  Support for the "old" C-style pointer methods are still
provided for backward compatibility with existing code.

As an example - to retrieve the x, y, and z data for Euler Angles from
the bno055, the original python code would look something like:

       ...
       x = sensorObj.new_floatp()
       y = sensorObj.new_floatp()
       z = sensorObj.new_floatp()
       ...
       sensor.getEulerAngles(x, y, z)
       ...
       print("Euler: Heading:", sensorObj.floatp_value(x), end=' ')
       print(" Roll:", sensorObj.floatp_value(y), end=' ')
       ...

Now the equivalent code is simply:

       floatData = sensor.getEulerAngles()
       print("Euler: Heading:", floatData[0], ...
       print(" Roll:", floatData[1], end=' ')
       ...

Additionally, interrupt handling for Java is now implemented
completely in the C++ header file now rather than the .cxx file, so no
special SWIG processing is required anymore. See Issue #518 .

Signed-off-by: Jon Trulson <jtrulson@ics.com>
This commit is contained in:
Jon Trulson
2017-03-07 12:43:44 -07:00
parent 2bdde21a2f
commit d4b536b593
16 changed files with 3382 additions and 2155 deletions

View File

@ -1,6 +1,8 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
* Copyright (c) 2016-2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@ -45,12 +47,12 @@ public class BNO055_Example
while (!sensor.isFullyCalibrated())
{
int calData[] = sensor.getCalibrationStatus();
upm_bno055.intVector calData = sensor.getCalibrationStatus();
System.out.println("Magnetometer: " + calData[0]
+ " Accelerometer: " + calData[1]
+ " Gyroscope: " + calData[2]
+ " System: " + calData[3]);
System.out.println("Magnetometer: " + calData.get(0)
+ " Accelerometer: " + calData.get(1)
+ " Gyroscope: " + calData.get(2)
+ " System: " + calData.get(3));
Thread.sleep(1000);
@ -65,30 +67,30 @@ public class BNO055_Example
// update our values from the sensor
sensor.update();
float dataE[] = sensor.getEulerAngles();
System.out.println("Euler: Heading: " + dataE[0] +
" Roll: " + dataE[1] +
" Pitch: " + dataE[2] +
" degrees");
upm_bno055.floatVector data = sensor.getEulerAngles();
float dataQ[] = sensor.getQuaternions();
System.out.println("Quaternion: W: " + dataQ[0] +
" X:" + dataQ[1] +
" Y: " + dataQ[2] +
" Z: " + dataQ[3]);
System.out.println("Euler: Heading: " + data.get(0)
+ " Roll: " + data.get(1)
+ " Pitch: " + data.get(2)
+ " degrees");
float dataL[] = sensor.getLinearAcceleration();
System.out.println("Linear Acceleration: X: " + dataL[0] +
" Y: " + dataL[1] +
" Z: " + dataL[2] +
" m/s^2");
data = sensor.getQuaternions();
System.out.println("Quaternion: W: " + data.get(0)
+ " X: " + data.get(1)
+ " Y: " + data.get(2)
+ " Z: " + data.get(3));
float dataG[] = sensor.getGravityVectors();
System.out.println("Gravity Vector: X: " + dataG[0] +
" Y: " + dataG[1] +
" Z: " + dataG[2] +
" m/s^2");
data = sensor.getLinearAcceleration();
System.out.println("Linear Acceleration: X: " + data.get(0)
+ " Y: " + data.get(1)
+ " Z: " + data.get(2)
+ " m/s^2");
data = sensor.getGravityVectors();
System.out.println("Gravity Vector: X: " + data.get(0)
+ " Y: " + data.get(1)
+ " Z: " + data.get(2)
+ " m/s^2");
System.out.println();
Thread.sleep(250);