bno055: C port; C++ wraps C

The API has been changed in some cases - see the apichanges.md
document.

In addition, this driver uses a new upm_vectortypes.i SWIG interface
file to provide a mechanism for methods that return a vector of floats
and ints instead of a pointer to an array.

This works much nicer than C array pointers, and results in Python/JS/Java
code that looks much more "natural" to the language in use.

The Python, JS, and Java examples have been changed to use these
methods.  Support for the "old" C-style pointer methods are still
provided for backward compatibility with existing code.

As an example - to retrieve the x, y, and z data for Euler Angles from
the bno055, the original python code would look something like:

       ...
       x = sensorObj.new_floatp()
       y = sensorObj.new_floatp()
       z = sensorObj.new_floatp()
       ...
       sensor.getEulerAngles(x, y, z)
       ...
       print("Euler: Heading:", sensorObj.floatp_value(x), end=' ')
       print(" Roll:", sensorObj.floatp_value(y), end=' ')
       ...

Now the equivalent code is simply:

       floatData = sensor.getEulerAngles()
       print("Euler: Heading:", floatData[0], ...
       print(" Roll:", floatData[1], end=' ')
       ...

Additionally, interrupt handling for Java is now implemented
completely in the C++ header file now rather than the .cxx file, so no
special SWIG processing is required anymore. See Issue #518 .

Signed-off-by: Jon Trulson <jtrulson@ics.com>
This commit is contained in:
Jon Trulson
2017-03-07 12:43:44 -07:00
parent 2bdde21a2f
commit d4b536b593
16 changed files with 3382 additions and 2155 deletions

View File

@ -1,5 +1,8 @@
set (libname "bno055")
set (libdescription "Intelligent 9-axis Absolute Orientation Sensor")
set (module_src ${libname}.cxx)
set (module_hpp ${libname}.hpp)
upm_module_init(mraa)
upm_mixed_module_init (NAME bno055
DESCRIPTION "Intelligent 9-axis Absolute Orientation Sensor"
C_HDR bno055.h bno055_regs.h
C_SRC bno055.c
CPP_HDR bno055.hpp
CPP_SRC bno055.cxx
CPP_WRAPS_C
REQUIRES mraa)

910
src/bno055/bno055.c Normal file
View File

@ -0,0 +1,910 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016-2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <assert.h>
#include <upm_utilities.h>
#include "bno055.h"
// macro for converting a uint8_t low/high pair into a float
#define INT16_TO_FLOAT(l, h) \
(float)( (int16_t)( (l) | ((h) << 8) ) )
// clear internal data items
static void _clear_data(const bno055_context dev)
{
assert(dev != NULL);
dev->magX = dev->magY = dev->magZ = 0;
dev->accX = dev->accY = dev->accZ = 0;
dev->gyrX = dev->gyrY = dev->gyrZ = 0;
dev->eulHeading = dev->eulRoll = dev->eulPitch = 0;
dev->quaW = dev->quaX = dev->quaY = dev->quaZ = 0;
dev->liaX = dev->liaY = dev->liaZ = 0;
dev->grvX = dev->grvY = dev->grvZ = 0;
}
// load fusion data
static void _update_fusion_data(const bno055_context dev)
{
assert(dev != NULL);
// bail if we are in config mode, or aren't in a fusion mode...
if (dev->currentMode == BNO055_OPERATION_MODE_CONFIGMODE ||
dev->currentMode < BNO055_OPERATION_MODE_IMU)
return;
bno055_set_page(dev, 0, false);
// FIXME/MAYBE? - abort early if SYS calibration is == 0?
const int fusionBytes = 26;
uint8_t buf[fusionBytes];
bno055_read_regs(dev, BNO055_REG_EUL_HEADING_LSB, buf, fusionBytes);
dev->eulHeading = INT16_TO_FLOAT(buf[0], buf[1]);
dev->eulRoll = INT16_TO_FLOAT(buf[2], buf[3]);
dev->eulPitch = INT16_TO_FLOAT(buf[4], buf[5]);
dev->quaW = INT16_TO_FLOAT(buf[6], buf[7]);
dev->quaX = INT16_TO_FLOAT(buf[8], buf[9]);
dev->quaY = INT16_TO_FLOAT(buf[10], buf[11]);
dev->quaZ = INT16_TO_FLOAT(buf[12], buf[13]);
dev->liaX = INT16_TO_FLOAT(buf[14], buf[15]);
dev->liaY = INT16_TO_FLOAT(buf[16], buf[17]);
dev->liaZ = INT16_TO_FLOAT(buf[18], buf[19]);
dev->grvX = INT16_TO_FLOAT(buf[20], buf[21]);
dev->grvY = INT16_TO_FLOAT(buf[22], buf[23]);
dev->grvZ = INT16_TO_FLOAT(buf[24], buf[25]);
}
// update non-fusion data
static void _update_non_fusion_data(const bno055_context dev)
{
assert(dev != NULL);
// bail if we are in config mode...
if (dev->currentMode == BNO055_OPERATION_MODE_CONFIGMODE)
return;
bno055_set_page(dev, 0, false);
const int nonFusionBytes = 18;
uint8_t buf[nonFusionBytes];
bno055_read_regs(dev, BNO055_REG_ACC_DATA_X_LSB, buf, nonFusionBytes);
dev->accX = INT16_TO_FLOAT(buf[0], buf[1]);
dev->accY = INT16_TO_FLOAT(buf[2], buf[3]);
dev->accZ = INT16_TO_FLOAT(buf[4], buf[5]);
dev->magX = INT16_TO_FLOAT(buf[6], buf[7]);
dev->magY = INT16_TO_FLOAT(buf[8], buf[9]);
dev->magZ = INT16_TO_FLOAT(buf[10], buf[11]);
dev->gyrX = INT16_TO_FLOAT(buf[12], buf[13]);
dev->gyrY = INT16_TO_FLOAT(buf[14], buf[15]);
dev->gyrZ = INT16_TO_FLOAT(buf[16], buf[17]);
}
// init
bno055_context bno055_init(int bus, uint8_t addr)
{
bno055_context dev =
(bno055_context)malloc(sizeof(struct _bno055_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _bno055_context));
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
bno055_close(dev);
return NULL;
}
if (!(dev->i2c = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__);
bno055_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, addr) != MRAA_SUCCESS)
{
printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__);
bno055_close(dev);
return NULL;
}
_clear_data(dev);
// forcibly set page 0, so we are synced with the device
if (bno055_set_page(dev, 0, true))
{
printf("%s: bno055_set_page() failed.\n", __FUNCTION__);
bno055_close(dev);
return NULL;
}
// check the chip id. This has to be done after forcibly setting
// page 0, as that is the only page where the chip id is present.
uint8_t chipID = bno055_get_chip_id(dev);
if (chipID != BNO055_CHIPID)
{
printf("%s: Invalid chip ID. Expected 0x%02x, got 0x%02x\n",
__FUNCTION__, BNO055_CHIPID, chipID);
bno055_close(dev);
return NULL;
}
// if the above two accesses succeeded, the rest should succeed
// set config mode
bno055_set_operation_mode(dev, BNO055_OPERATION_MODE_CONFIGMODE);
// default to internal clock
bno055_set_clock_external(dev, false);
// we specifically avoid doing a reset so that if the device is
// already calibrated, it will remain so.
// we always use C for temperature
bno055_set_temperature_units_celsius(dev);
// default to accelerometer temp
bno055_set_temperature_source(dev, BNO055_TEMP_SOURCE_ACC);
// set accel units to m/s^2
bno055_set_accelerometer_units(dev, false);
// set gyro units to degrees
bno055_set_gyroscope_units(dev, false);
// set Euler units to degrees
bno055_set_euler_units(dev, false);
// by default, we set the operating mode to the NDOF fusion mode
bno055_set_operation_mode(dev, BNO055_OPERATION_MODE_NDOF);
return dev;
}
void bno055_close(bno055_context dev)
{
assert(dev != NULL);
bno055_uninstall_isr(dev);
if (dev->i2c)
mraa_i2c_stop(dev->i2c);
free(dev);
}
upm_result_t bno055_update(const bno055_context dev)
{
assert(dev != NULL);
upm_result_t rv = UPM_SUCCESS;
if ((rv = bno055_set_page(dev, 0, false)))
return rv;
// temperature first, always in Celsius
dev->temperature = (float)((int8_t)bno055_read_reg(dev,
BNO055_REG_TEMPERATURE));
_update_fusion_data(dev);
_update_non_fusion_data(dev);
return rv;
}
uint8_t bno055_read_reg(const bno055_context dev, uint8_t reg)
{
assert(dev != NULL);
int rv = mraa_i2c_read_byte_data(dev->i2c, reg);
if (rv < 0)
{
printf("%s: mraa_i2c_read_byte_data() failed, returning 0\n",
__FUNCTION__);
return 0;
}
return (uint8_t)rv;
}
upm_result_t bno055_read_regs(const bno055_context dev, uint8_t reg,
uint8_t *buffer, size_t len)
{
assert(dev != NULL);
if (mraa_i2c_read_bytes_data(dev->i2c, reg, buffer, len) < 0)
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bno055_write_reg(const bno055_context dev,
uint8_t reg, uint8_t val)
{
assert(dev != NULL);
if (mraa_i2c_write_byte_data(dev->i2c, val, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bno055_write_regs(const bno055_context dev, uint8_t reg,
uint8_t *buffer, size_t len)
{
assert(dev != NULL);
uint8_t buf[len + 1];
buf[0] = reg;
for (int i=0; i<len; i++)
buf[i+1] = buffer[i];
if (mraa_i2c_write(dev->i2c, buf, len + 1))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bno055_get_chip_id(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_CHIP_ID);
}
uint8_t bno055_get_acc_id(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_ACC_ID);
}
uint8_t bno055_get_mag_id(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_MAG_ID);
}
uint8_t bno055_get_gyr_id(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_GYR_ID);
}
uint16_t bno055_get_sw_revision(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t lsb, msb;
lsb = bno055_read_reg(dev, BNO055_REG_SW_REV_ID_LSB);
msb = bno055_read_reg(dev, BNO055_REG_SW_REV_ID_MSB);
return (uint16_t)(lsb | (msb << 8));
}
uint8_t bno055_get_bootloader_id(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_BL_REV_ID);
}
upm_result_t bno055_set_page(const bno055_context dev, uint8_t page,
bool force)
{
assert(dev != NULL);
// page can only be 0 or 1
if (!(page == 0 || page == 1))
{
printf("%s: page number can only be 0 or 1.\n",
__FUNCTION__);
return UPM_ERROR_INVALID_PARAMETER;
}
if (force || page != dev->currentPage)
bno055_write_reg(dev, BNO055_REG_PAGE_ID, page);
dev->currentPage = page;
return UPM_SUCCESS;
}
void bno055_set_clock_external(const bno055_context dev, bool extClock)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
// first we need to be in config mode
BNO055_OPERATION_MODES_T currentMode = dev->currentMode;
bno055_set_operation_mode(dev, BNO055_OPERATION_MODE_CONFIGMODE);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_SYS_TRIGGER);
if (extClock)
reg |= BNO055_SYS_TRIGGER_CLK_SEL;
else
reg &= ~BNO055_SYS_TRIGGER_CLK_SEL;
bno055_write_reg(dev, BNO055_REG_SYS_TRIGGER, reg);
// now reset our operating mode
bno055_set_operation_mode(dev, currentMode);
}
void bno055_set_temperature_source(const bno055_context dev,
BNO055_TEMP_SOURCES_T src)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
bno055_write_reg(dev, BNO055_REG_TEMP_SOURCE, src);
}
void bno055_set_temperature_units_celsius(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_UNIT_SEL);
reg &= ~BNO055_UNIT_SEL_TEMP_UNIT;
bno055_write_reg(dev, BNO055_REG_UNIT_SEL, reg);
}
void bno055_set_accelerometer_units(const bno055_context dev, bool mg)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_UNIT_SEL);
if (mg)
{
reg |= BNO055_UNIT_SEL_ACC_UNIT;
dev->accUnitScale = 1.0;
}
else
{
reg &= ~BNO055_UNIT_SEL_ACC_UNIT;
dev->accUnitScale = 100.0;
}
bno055_write_reg(dev, BNO055_REG_UNIT_SEL, reg);
}
void bno055_set_gyroscope_units(const bno055_context dev, bool radians)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_UNIT_SEL);
if (radians)
{
reg |= BNO055_UNIT_SEL_GYR_UNIT;
dev->gyrUnitScale = 900.0;
}
else
{
reg &= ~BNO055_UNIT_SEL_GYR_UNIT;
dev->gyrUnitScale = 16.0;
}
bno055_write_reg(dev, BNO055_REG_UNIT_SEL, reg);
}
void bno055_set_euler_units(const bno055_context dev, bool radians)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_UNIT_SEL);
if (radians)
{
reg |= BNO055_UNIT_SEL_EUL_UNIT;
dev->eulUnitScale = 900.0;
}
else
{
reg &= ~BNO055_UNIT_SEL_EUL_UNIT;
dev->eulUnitScale = 16.0;
}
bno055_write_reg(dev, BNO055_REG_UNIT_SEL, reg);
}
void bno055_set_operation_mode(const bno055_context dev,
BNO055_OPERATION_MODES_T mode)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
// we clear all of our loaded data on mode changes
_clear_data(dev);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_OPER_MODE);
reg &= ~(_BNO055_OPR_MODE_OPERATION_MODE_MASK
<< _BNO055_OPR_MODE_OPERATION_MODE_SHIFT);
reg |= (mode << _BNO055_OPR_MODE_OPERATION_MODE_SHIFT);
bno055_write_reg(dev, BNO055_REG_OPER_MODE, reg);
dev->currentMode = mode;
upm_delay_us(30);
}
void bno055_get_calibration_status(const bno055_context dev,
int *mag, int *acc,
int *gyr, int *sys)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_CALIB_STAT);
if (mag)
*mag = (reg >> _BNO055_CALIB_STAT_MAG_SHIFT)
& _BNO055_CALIB_STAT_MAG_MASK;
if (acc)
*acc = (reg >> _BNO055_CALIB_STAT_ACC_SHIFT)
& _BNO055_CALIB_STAT_ACC_MASK;
if (gyr)
*gyr = (reg >> _BNO055_CALIB_STAT_GYR_SHIFT)
& _BNO055_CALIB_STAT_GYR_MASK;
if (sys)
*sys = (reg >> _BNO055_CALIB_STAT_SYS_SHIFT)
& _BNO055_CALIB_STAT_SYS_MASK;
}
bool bno055_is_fully_calibrated(const bno055_context dev)
{
assert(dev != NULL);
int mag, acc, gyr, sys;
bno055_get_calibration_status(dev, &mag, &acc, &gyr, &sys);
// all of them equal to 3 means fully calibrated
if (mag == 3 && acc == 3 && gyr == 3 && sys == 3)
return true;
else
return false;
}
void bno055_reset_system(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_SYS_TRIGGER);
reg |= BNO055_SYS_TRIGGER_RST_SYS;
bno055_write_reg(dev, BNO055_REG_SYS_TRIGGER, reg);
upm_delay(1);
}
void bno055_reset_interrupt_status(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
uint8_t reg = bno055_read_reg(dev, BNO055_REG_SYS_TRIGGER);
reg |= BNO055_SYS_TRIGGER_RST_INT;
bno055_write_reg(dev, BNO055_REG_SYS_TRIGGER, reg);
}
uint8_t bno055_get_interrupt_status(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return bno055_read_reg(dev, BNO055_REG_INT_STA);
}
uint8_t bno055_get_interrupt_enable(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
return bno055_read_reg(dev, BNO055_REG_INT_EN);
}
void bno055_set_interrupt_enable(const bno055_context dev, uint8_t enables)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
bno055_write_reg(dev, BNO055_REG_INT_EN, enables);
}
uint8_t bno055_get_interrupt_mask(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
return bno055_read_reg(dev, BNO055_REG_INT_MSK);
}
void bno055_set_interrupt_mask(const bno055_context dev, uint8_t mask)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
bno055_write_reg(dev, BNO055_REG_INT_MSK, mask);
}
BNO055_SYS_STATUS_T bno055_get_system_status(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return (BNO055_SYS_STATUS_T)bno055_read_reg(dev, BNO055_REG_SYS_STATUS);
}
BNO055_SYS_ERR_T bno055_get_system_error(const bno055_context dev)
{
assert(dev != NULL);
bno055_set_page(dev, 0, false);
return (BNO055_SYS_ERR_T)bno055_read_reg(dev, BNO055_REG_SYS_ERROR);
}
upm_result_t bno055_read_calibration_data(const bno055_context dev,
uint8_t *data, size_t len)
{
assert(dev != NULL);
assert(data != NULL);
if (!bno055_is_fully_calibrated(dev))
{
printf("%s: Sensor must be fully calibrated first.\n",
__FUNCTION__);
return UPM_ERROR_NO_DATA;
}
if (len != BNO055_CALIBRATION_DATA_SIZE)
{
printf("%s: len must equal BNO055_CALIBRATION_DATA_SIZE (%d).\n",
__FUNCTION__, BNO055_CALIBRATION_DATA_SIZE);
return UPM_ERROR_INVALID_SIZE;
}
// should be at page 0, but lets make sure
bno055_set_page(dev, 0, false);
// first we need to go back into config mode
BNO055_OPERATION_MODES_T currentMode = dev->currentMode;
bno055_set_operation_mode(dev, BNO055_OPERATION_MODE_CONFIGMODE);
bno055_read_regs(dev, BNO055_REG_ACC_OFFSET_X_LSB, data,
BNO055_CALIBRATION_DATA_SIZE);
// now reset our operating mode
bno055_set_operation_mode(dev, currentMode);
return UPM_SUCCESS;
}
upm_result_t bno055_write_calibration_data(const bno055_context dev,
uint8_t *data,
size_t len)
{
assert(dev != NULL);
assert(data != NULL);
if (len != BNO055_CALIBRATION_DATA_SIZE)
{
printf("%s: len must equal BNO055_CALIBRATION_DATA_SIZE "
"(expected %d, got %d).\n",
__FUNCTION__, BNO055_CALIBRATION_DATA_SIZE, (int)len);
return UPM_ERROR_INVALID_SIZE;
}
// should be at page 0, but lets make sure
bno055_set_page(dev, 0, false);
// first we need to go back into config mode
BNO055_OPERATION_MODES_T currentMode = dev->currentMode;
bno055_set_operation_mode(dev, BNO055_OPERATION_MODE_CONFIGMODE);
// write the data
bno055_write_regs(dev, BNO055_REG_ACC_OFFSET_X_LSB, data,
BNO055_CALIBRATION_DATA_SIZE);
// now reset our operating mode
bno055_set_operation_mode(dev, currentMode);
return UPM_SUCCESS;
}
float bno055_get_temperature(const bno055_context dev)
{
assert(dev != NULL);
return dev->temperature;
}
void bno055_get_euler_angles(const bno055_context dev, float *heading,
float *roll, float *pitch)
{
assert(dev != NULL);
if (heading)
*heading = dev->eulHeading / dev->eulUnitScale;
if (roll)
*roll = dev->eulRoll / dev->eulUnitScale;
if (pitch)
*pitch = dev->eulPitch / dev->eulUnitScale;
}
void bno055_get_quaternions(const bno055_context dev, float *w, float *x,
float *y, float *z)
{
assert(dev != NULL);
// from the datasheet
const float scale = (float)(1.0 / (float)(1 << 14));
if (w)
*w = dev->quaW * scale;
if (x)
*x = dev->quaX * scale;
if (y)
*y = dev->quaY * scale;
if (z)
*z = dev->quaZ * scale;
}
void bno055_get_linear_acceleration(const bno055_context dev, float *x,
float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = dev->liaX / dev->accUnitScale;
if (y)
*y = dev->liaY / dev->accUnitScale;
if (z)
*z = dev->liaZ / dev->accUnitScale;
}
void bno055_get_gravity_vectors(const bno055_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = dev->grvX / dev->accUnitScale;
if (y)
*y = dev->grvY / dev->accUnitScale;
if (z)
*z = dev->grvZ / dev->accUnitScale;
}
void bno055_get_accelerometer(const bno055_context dev, float *x, float *y,
float *z)
{
assert(dev != NULL);
if (x)
*x = dev->accX / dev->accUnitScale;
if (y)
*y = dev->accY / dev->accUnitScale;
if (z)
*z = dev->accZ / dev->accUnitScale;
}
void bno055_get_magnetometer(const bno055_context dev, float *x, float *y,
float *z)
{
assert(dev != NULL);
// from the datasheet - 16 uT's per LSB
const float scale = 16.0;
if (x)
*x = dev->magX / scale;
if (y)
*y = dev->magY / scale;
if (z)
*z = dev->magZ / scale;
}
void bno055_get_gyroscope(const bno055_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = dev->gyrX / dev->gyrUnitScale;
if (y)
*y = dev->gyrY / dev->gyrUnitScale;
if (z)
*z = dev->gyrZ / dev->gyrUnitScale;
}
void bno055_set_acceleration_config(const bno055_context dev,
BNO055_ACC_RANGE_T range,
BNO055_ACC_BW_T bw,
BNO055_ACC_PWR_MODE_T pwr)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
uint8_t reg = ((range << _BNO055_ACC_CONFIG_ACC_RANGE_SHIFT)
| (bw << _BNO055_ACC_CONFIG_ACC_BW_SHIFT)
| (pwr << _BNO055_ACC_CONFIG_ACC_PWR_MODE_SHIFT));
bno055_write_reg(dev, BNO055_REG_ACC_CONFIG, reg);
}
void bno055_set_magnetometer_config(const bno055_context dev,
BNO055_MAG_ODR_T odr,
BNO055_MAG_OPR_T opr,
BNO055_MAG_POWER_T pwr)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
uint8_t reg = ((odr << _BNO055_MAG_CONFIG_MAG_ODR_SHIFT)
| (opr << _BNO055_MAG_CONFIG_MAG_OPR_MODE_SHIFT)
| (pwr << _BNO055_MAG_CONFIG_MAG_POWER_MODE_SHIFT));
bno055_write_reg(dev, BNO055_REG_MAG_CONFIG, reg);
}
void bno055_set_gyroscope_config(const bno055_context dev,
BNO055_GYR_RANGE_T range,
BNO055_GYR_BW_T bw,
BNO055_GYR_POWER_MODE_T pwr)
{
assert(dev != NULL);
bno055_set_page(dev, 1, false);
uint8_t reg = ((range << _BNO055_GYR_CONFIG0_GYR_RANGE_SHIFT)
| (bw << _BNO055_GYR_CONFIG0_GYR_BW_SHIFT));
bno055_write_reg(dev, BNO055_REG_GYR_CONFIG0, reg);
reg = (pwr << _BNO055_GYR_CONFIG1_GYR_POWER_MODE_SHIFT);
bno055_write_reg(dev, BNO055_REG_GYR_CONFIG1, reg);
}
upm_result_t bno055_install_isr(const bno055_context dev,
int gpio, mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
assert(dev != NULL);
// delete any existing ISR and GPIO context
bno055_uninstall_isr(dev);
// create gpio context
if (!(dev->gpio = mraa_gpio_init(gpio)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_dir(dev->gpio, MRAA_GPIO_IN);
if (mraa_gpio_isr(dev->gpio, level, isr, arg))
{
mraa_gpio_close(dev->gpio);
dev->gpio = NULL;
printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
return UPM_SUCCESS;
}
void bno055_uninstall_isr(const bno055_context dev)
{
assert(dev != NULL);
if (dev->gpio)
{
mraa_gpio_isr_exit(dev->gpio);
mraa_gpio_close(dev->gpio);
dev->gpio = NULL;
}
}

View File

@ -1,6 +1,8 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
* Copyright (c) 2016-17 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@ -22,788 +24,342 @@
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <string.h>
#include "bno055.hpp"
using namespace upm;
using namespace std;
// conversion from fahrenheit to celsius and back
static float f2c(float f)
{
return ((f - 32.0) / (9.0 / 5.0));
}
// conversion from Celsius to Fahrenheit
static float c2f(float c)
{
return (c * (9.0 / 5.0) + 32.0);
return (c * (9.0 / 5.0) + 32.0);
}
BNO055::BNO055(int bus, uint8_t addr) :
m_i2c(bus), m_gpioIntr(0)
m_bno055(bno055_init(bus, addr))
{
m_addr = addr;
clearData();
mraa::Result rv;
if ( (rv = m_i2c.address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(string(__FUNCTION__) +
": I2c.address() failed");
return;
}
// forcibly set page 0, so we are synced
setPage(0, true);
// set config mode
setOperationMode(OPERATION_MODE_CONFIGMODE);
// default to internal clock
setClockExternal(false);
// we specifically avoid doing a reset so that if the device is
// already calibrated, it will remain so.
// check the chip id
uint8_t chipID = readReg(REG_CHIP_ID);
if (chipID != BNO055_CHIPID)
{
throw std::runtime_error(string(__FUNCTION__)
+ ": invalid chip ID. Expected "
+ std::to_string(int(BNO055_CHIPID))
+ ", got "
+ std::to_string(int(chipID)));
return;
}
// default to temperature C
setTemperatureUnits(true);
// default to accelerometer temp
setTemperatureSource(TEMP_SOURCE_ACC);
// set accel units to m/s^2
setAccelerometerUnits(false);
// set gyro units to degrees
setGyroscopeUnits(false);
// set Euler units to degrees
setEulerUnits(false);
// by default, we set the operating mode to the NDOF fusion mode
setOperationMode(OPERATION_MODE_NDOF);
if (!m_bno055)
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_init() failed");
}
BNO055::~BNO055()
{
uninstallISR();
bno055_close(m_bno055);
}
void BNO055::update()
{
setPage(0);
// temperature first, we always store as C
float tmpF = float((int8_t)readReg(REG_TEMPERATURE));
if (m_tempIsC)
m_temperature = tmpF;
else
m_temperature = f2c(tmpF * 2.0);
updateFusionData();
updateNonFusionData();
if (bno055_update(m_bno055))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_update() failed");
}
uint8_t BNO055::readReg(uint8_t reg)
{
return m_i2c.readReg(reg);
return bno055_read_reg(m_bno055, reg);
}
void BNO055::readRegs(uint8_t reg, uint8_t *buffer, int len)
{
m_i2c.readBytesReg(reg, buffer, len);
if (bno055_read_regs(m_bno055, reg, buffer, len))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_read_regs() failed");
}
bool BNO055::writeReg(uint8_t reg, uint8_t val)
void BNO055::writeReg(uint8_t reg, uint8_t val)
{
mraa::Result rv;
if ((rv = m_i2c.writeReg(reg, val)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": I2c.writeReg() failed");
}
return true;
if (bno055_write_reg(m_bno055, reg, val))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_write_reg() failed");
}
bool BNO055::writeRegs(uint8_t reg, uint8_t *buffer, int len)
void BNO055::writeRegs(uint8_t reg, uint8_t *buffer, int len)
{
uint8_t buf[len + 1];
buf[0] = reg;
for (int i=0; i<len; i++)
buf[i+1] = buffer[i];
mraa::Result rv;
if ((rv = m_i2c.write(buf, len+1)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": I2c.write() failed");
}
return true;
if (bno055_write_regs(m_bno055, reg, buffer, len))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_write_regs() failed");
}
uint8_t BNO055::getChipID()
{
setPage(0);
return readReg(REG_CHIP_ID);
return bno055_get_chip_id(m_bno055);
}
uint8_t BNO055::getACCID()
{
setPage(0);
return readReg(REG_ACC_ID);
return bno055_get_acc_id(m_bno055);
}
uint8_t BNO055::getMAGID()
{
setPage(0);
return readReg(REG_MAG_ID);
return bno055_get_mag_id(m_bno055);
}
uint8_t BNO055::getGYRID()
{
setPage(0);
return readReg(REG_GYR_ID);
return bno055_get_gyr_id(m_bno055);
}
uint16_t BNO055::getSWRevID()
{
setPage(0);
uint16_t vers = uint16_t( readReg(REG_SW_REV_ID_LSB) |
(readReg(REG_SW_REV_ID_MSB) << 8) );
return vers;
return bno055_get_sw_revision(m_bno055);
}
uint8_t BNO055::getBootLoaderID()
{
setPage(0);
return readReg(REG_BL_REV_ID);
return bno055_get_bootloader_id(m_bno055);
}
void BNO055::setPage(uint8_t page, bool force)
{
// page can only be 0 or 1
if (!(page == 0 || page == 1))
throw std::out_of_range(string(__FUNCTION__) +
": page can only be 0 or 1");
if (force || page != m_currentPage)
writeReg(REG_PAGE_ID, page);
m_currentPage = page;
if (bno055_set_page(m_bno055, page, force))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_set_page() failed");
}
void BNO055::setClockExternal(bool extClock)
{
setPage(0);
// first we need to be in config mode
OPERATION_MODES_T currentMode = m_currentMode;
setOperationMode(OPERATION_MODE_CONFIGMODE);
uint8_t reg = readReg(REG_SYS_TRIGGER);
if (extClock)
reg |= SYS_TRIGGER_CLK_SEL;
else
reg &= ~SYS_TRIGGER_CLK_SEL;
writeReg(REG_SYS_TRIGGER, reg);
// now reset our operating mode
setOperationMode(currentMode);
bno055_set_clock_external(m_bno055, extClock);
}
void BNO055::setTemperatureSource(TEMP_SOURCES_T src)
void BNO055::setTemperatureSource(BNO055_TEMP_SOURCES_T src)
{
setPage(0);
writeReg(REG_TEMP_SOURCE, src);
}
void BNO055::setTemperatureUnits(bool celsius)
{
setPage(0);
uint8_t reg = readReg(REG_UNIT_SEL);
if (celsius)
reg &= ~UNIT_SEL_TEMP_UNIT;
else
reg |= UNIT_SEL_TEMP_UNIT;
writeReg(REG_UNIT_SEL, reg);
m_tempIsC = celsius;
bno055_set_temperature_source(m_bno055, src);
}
void BNO055::setAccelerometerUnits(bool mg)
{
setPage(0);
uint8_t reg = readReg(REG_UNIT_SEL);
if (mg)
{
reg |= UNIT_SEL_ACC_UNIT;
m_accUnitScale = 1.0;
}
else
{
reg &= ~UNIT_SEL_ACC_UNIT;
m_accUnitScale = 100.0;
}
writeReg(REG_UNIT_SEL, reg);
bno055_set_accelerometer_units(m_bno055, mg);
}
void BNO055::setGyroscopeUnits(bool radians)
{
setPage(0);
uint8_t reg = readReg(REG_UNIT_SEL);
if (radians)
{
reg |= UNIT_SEL_GYR_UNIT;
m_gyrUnitScale = 900.0;
}
else
{
reg &= ~UNIT_SEL_GYR_UNIT;
m_gyrUnitScale = 16.0;
}
writeReg(REG_UNIT_SEL, reg);
bno055_set_gyroscope_units(m_bno055, radians);
}
void BNO055::setEulerUnits(bool radians)
{
setPage(0);
uint8_t reg = readReg(REG_UNIT_SEL);
if (radians)
{
reg |= UNIT_SEL_EUL_UNIT;
m_eulUnitScale = 900.0;
}
else
{
reg &= ~UNIT_SEL_EUL_UNIT;
m_eulUnitScale = 16.0;
}
writeReg(REG_UNIT_SEL, reg);
bno055_set_euler_units(m_bno055, radians);
}
void BNO055::setOperationMode(OPERATION_MODES_T mode)
void BNO055::setOperationMode(BNO055_OPERATION_MODES_T mode)
{
setPage(0);
// we clear all of our loaded data on mode changes
clearData();
uint8_t reg = readReg(REG_OPER_MODE);
reg &= ~(_OPR_MODE_OPERATION_MODE_MASK << _OPR_MODE_OPERATION_MODE_SHIFT);
reg |= (mode << _OPR_MODE_OPERATION_MODE_SHIFT);
writeReg(REG_OPER_MODE, reg);
m_currentMode = mode;
usleep(30);
bno055_set_operation_mode(m_bno055, mode);
}
void BNO055::getCalibrationStatus(int *mag, int *acc, int *gyr, int *sys)
{
setPage(0);
uint8_t reg = readReg(REG_CALIB_STAT);
if (mag)
*mag = (reg >> _CALIB_STAT_MAG_SHIFT) & _CALIB_STAT_MAG_MASK;
if (acc)
*acc = (reg >> _CALIB_STAT_ACC_SHIFT) & _CALIB_STAT_ACC_MASK;
if (gyr)
*gyr = (reg >> _CALIB_STAT_GYR_SHIFT) & _CALIB_STAT_GYR_MASK;
if (sys)
*sys = (reg >> _CALIB_STAT_SYS_SHIFT) & _CALIB_STAT_SYS_MASK;
bno055_get_calibration_status(m_bno055, mag, acc, gyr, sys);
}
int *BNO055::getCalibrationStatus()
vector<int> BNO055::getCalibrationStatus()
{
static int v[4]; // mag, acc, gyr, sys;
int v[4]; // mag, acc, gyr, sys;
getCalibrationStatus(&v[0], &v[1], &v[2], &v[3]);
return v;
getCalibrationStatus(&v[0], &v[1], &v[2], &v[3]);
return vector<int>(v, v+4);
}
bool BNO055::isFullyCalibrated()
{
int mag, acc, gyr, sys;
getCalibrationStatus(&mag, &acc, &gyr, &sys);
// all of them equal to 3 means fully calibrated
if (mag == 3 && acc == 3 && gyr == 3 && sys == 3)
return true;
else
return false;
return bno055_is_fully_calibrated(m_bno055);
}
void BNO055::resetSystem()
{
setPage(0);
uint8_t reg = readReg(REG_SYS_TRIGGER);
reg |= SYS_TRIGGER_RST_SYS;
writeReg(REG_SYS_TRIGGER, reg);
sleep(1);
bno055_reset_system(m_bno055);
}
void BNO055::resetInterruptStatus()
{
setPage(0);
uint8_t reg = readReg(REG_SYS_TRIGGER);
reg |= SYS_TRIGGER_RST_INT;
writeReg(REG_SYS_TRIGGER, reg);
bno055_reset_interrupt_status(m_bno055);
}
uint8_t BNO055::getInterruptStatus()
{
setPage(0);
return readReg(REG_INT_STA);
return bno055_get_interrupt_status(m_bno055);
}
uint8_t BNO055::getInterruptEnable()
{
setPage(1);
return readReg(REG_INT_EN);
return bno055_get_interrupt_enable(m_bno055);
}
void BNO055::setInterruptEnable(uint8_t enables)
{
setPage(1);
writeReg(REG_INT_EN, enables);
return bno055_set_interrupt_enable(m_bno055, enables);
}
uint8_t BNO055::getInterruptMask()
{
setPage(1);
return readReg(REG_INT_MSK);
return bno055_get_interrupt_mask(m_bno055);
}
void BNO055::setInterruptMask(uint8_t mask)
{
setPage(1);
writeReg(REG_INT_MSK, mask);
return bno055_set_interrupt_mask(m_bno055, mask);
}
BNO055::SYS_STATUS_T BNO055::getSystemStatus()
BNO055_SYS_STATUS_T BNO055::getSystemStatus()
{
setPage(0);
return static_cast<BNO055::SYS_STATUS_T>(readReg(REG_SYS_STATUS));
return bno055_get_system_status(m_bno055);
}
BNO055::SYS_ERR_T BNO055::getSystemError()
BNO055_SYS_ERR_T BNO055::getSystemError()
{
setPage(0);
return static_cast<BNO055::SYS_ERR_T>(readReg(REG_SYS_ERROR));
return bno055_get_system_error(m_bno055);
}
string BNO055::readCalibrationData()
std::vector<uint8_t> BNO055::readCalibrationData()
{
if (!isFullyCalibrated())
{
cerr << __FUNCTION__ << ": Sensor must be fully calibrated first."
<< endl;
return "";
}
uint8_t calibrationData[BNO055_CALIBRATION_DATA_SIZE];
// should be at page 0, but lets make sure
setPage(0);
if (bno055_read_calibration_data(m_bno055, calibrationData,
BNO055_CALIBRATION_DATA_SIZE))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_read_calibration_data() failed");
// first we need to go back into config mode
OPERATION_MODES_T currentMode = m_currentMode;
setOperationMode(OPERATION_MODE_CONFIGMODE);
uint8_t calibData[calibrationDataNumBytes];
readRegs(REG_ACC_OFFSET_X_LSB, calibData, calibrationDataNumBytes);
string rv((char *)calibData, calibrationDataNumBytes);
// now reset our operating mode
setOperationMode(currentMode);
return rv;
return vector<uint8_t>(calibrationData,
calibrationData+BNO055_CALIBRATION_DATA_SIZE);
}
void BNO055::writeCalibrationData(string calibData)
void BNO055::writeCalibrationData(vector<uint8_t> calibrationData)
{
if (static_cast<int>(calibData.size()) != calibrationDataNumBytes)
{
throw std::invalid_argument(std::string(__FUNCTION__)
+ ": calibData string must be exactly "
+ std::to_string(calibrationDataNumBytes)
+ " bytes long");
}
// should be at page 0, but lets make sure
setPage(0);
// first we need to go back into config mode
OPERATION_MODES_T currentMode = m_currentMode;
setOperationMode(OPERATION_MODE_CONFIGMODE);
// write the data
writeRegs(REG_ACC_OFFSET_X_LSB, (uint8_t *)calibData.c_str(),
calibData.size());
// now reset our operating mode
setOperationMode(currentMode);
if (bno055_write_calibration_data(m_bno055, calibrationData.data(),
calibrationData.size()))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_write_calibration_data() failed");
}
float BNO055::getTemperature(bool fahrenheit)
{
if (fahrenheit)
return c2f(m_temperature);
else
return m_temperature;
}
float temperature = bno055_get_temperature(m_bno055);
void BNO055::clearData()
{
m_magX = m_magY = m_magZ = 0;
m_accX = m_accY = m_accZ = 0;
m_gyrX = m_gyrY = m_gyrZ = 0;
m_eulHeading = m_eulRoll = m_eulPitch = 0;
m_quaW = m_quaX = m_quaY = m_quaZ = 0;
m_liaX = m_liaY = m_liaZ = 0;
m_grvX = m_grvY = m_grvZ = 0;
}
bool BNO055::updateFusionData()
{
// bail if we are in config mode, or aren't in a fusion mode...
if (m_currentMode == OPERATION_MODE_CONFIGMODE ||
m_currentMode < OPERATION_MODE_IMU)
return false;
setPage(0);
// FIXME/MAYBE? - abort early if SYS calibration is == 0?
const int fusionBytes = 26;
uint8_t buf[fusionBytes];
readRegs(REG_EUL_HEADING_LSB, buf, fusionBytes);
m_eulHeading = float(int16_t(buf[0] | (buf[1] << 8)));
m_eulRoll = float(int16_t(buf[2] | (buf[3] << 8)));
m_eulPitch = float(int16_t(buf[4] | (buf[5] << 8)));
m_quaW = float(int16_t(buf[6] | (buf[7] << 8)));
m_quaX = float(int16_t(buf[8] | (buf[9] << 8)));
m_quaY = float(int16_t(buf[10] | (buf[11] << 8)));
m_quaZ = float(int16_t(buf[12] | (buf[13] << 8)));
m_liaX = float(int16_t(buf[14] | (buf[15] << 8)));
m_liaY = float(int16_t(buf[16] | (buf[17] << 8)));
m_liaZ = float(int16_t(buf[18] | (buf[19] << 8)));
m_grvX = float(int16_t(buf[20] | (buf[21] << 8)));
m_grvY = float(int16_t(buf[22] | (buf[23] << 8)));
m_grvZ = float(int16_t(buf[24] | (buf[25] << 8)));
return true;
}
bool BNO055::updateNonFusionData()
{
// bail if we are in config mode...
if (m_currentMode == OPERATION_MODE_CONFIGMODE)
return false;
setPage(0);
const int nonFusionBytes = 18;
uint8_t buf[nonFusionBytes];
readRegs(REG_ACC_DATA_X_LSB, buf, nonFusionBytes);
m_accX = float(int16_t(buf[0] | (buf[1] << 8)));
m_accY = float(int16_t(buf[2] | (buf[3] << 8)));
m_accZ = float(int16_t(buf[4] | (buf[5] << 8)));
m_magX = float(int16_t(buf[6] | (buf[7] << 8)));
m_magY = float(int16_t(buf[8] | (buf[9] << 8)));
m_magZ = float(int16_t(buf[10] | (buf[11] << 8)));
m_gyrX = float(int16_t(buf[12] | (buf[13] << 8)));
m_gyrY = float(int16_t(buf[14] | (buf[15] << 8)));
m_gyrZ = float(int16_t(buf[16] | (buf[17] << 8)));
return true;
if (fahrenheit)
return c2f(temperature);
else
return temperature;
}
void BNO055::getEulerAngles(float *heading, float *roll, float *pitch)
{
if (heading)
*heading = m_eulHeading / m_eulUnitScale;
if (roll)
*roll = m_eulRoll / m_eulUnitScale;
if (pitch)
*pitch = m_eulPitch / m_eulUnitScale;
bno055_get_euler_angles(m_bno055, heading, roll, pitch);
}
float *BNO055::getEulerAngles()
vector<float> BNO055::getEulerAngles()
{
static float v[3];
getEulerAngles(&v[0], &v[1], &v[2]);
return v;
float v[3];
getEulerAngles(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::getQuaternions(float *w, float *x, float *y, float *z)
{
// from the datasheet
const float scale = float(1.0 / (1 << 14));
if (w)
*w = m_quaW * scale;
if (x)
*x = m_quaX * scale;
if (y)
*y = m_quaY * scale;
if (z)
*z = m_quaZ * scale;
bno055_get_quaternions(m_bno055, w, x, y, z);
}
float *BNO055::getQuaternions()
vector<float> BNO055::getQuaternions()
{
static float v[4];
getQuaternions(&v[0], &v[1], &v[2], &v[3]);
return v;
float v[4];
getQuaternions(&v[0], &v[1], &v[2], &v[3]);
return vector<float>(v, v+4);
}
void BNO055::getLinearAcceleration(float *x, float *y, float *z)
{
if (x)
*x = m_liaX / m_accUnitScale;
if (y)
*y = m_liaY / m_accUnitScale;
if (z)
*z = m_liaZ / m_accUnitScale;
bno055_get_linear_acceleration(m_bno055, x, y, z);
}
float *BNO055::getLinearAcceleration()
vector<float> BNO055::getLinearAcceleration()
{
static float v[3];
getLinearAcceleration(&v[0], &v[1], &v[2]);
return v;
float v[3];
getLinearAcceleration(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::getGravityVectors(float *x, float *y, float *z)
{
if (x)
*x = m_grvX / m_accUnitScale;
if (y)
*y = m_grvY / m_accUnitScale;
if (z)
*z = m_grvZ / m_accUnitScale;
bno055_get_gravity_vectors(m_bno055, x, y, z);
}
float *BNO055::getGravityVectors()
vector<float> BNO055::getGravityVectors()
{
static float v[3];
getGravityVectors(&v[0], &v[1], &v[2]);
return v;
static float v[3];
getGravityVectors(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::getAccelerometer(float *x, float *y, float *z)
{
if (x)
*x = m_accX / m_accUnitScale;
if (y)
*y = m_accY / m_accUnitScale;
if (z)
*z = m_accZ / m_accUnitScale;
bno055_get_accelerometer(m_bno055, x, y, z);
}
float *BNO055::getAccelerometer()
vector<float> BNO055::getAccelerometer()
{
static float v[3];
getAccelerometer(&v[0], &v[1], &v[2]);
return v;
static float v[3];
getAccelerometer(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::getMagnetometer(float *x, float *y, float *z)
{
// from the datasheet - 16 uT's per LSB
const float scale = 16.0;
if (x)
*x = m_magX / scale;
if (y)
*y = m_magY / scale;
if (z)
*z = m_magZ / scale;
bno055_get_magnetometer(m_bno055, x, y, z);
}
float *BNO055::getMagnetometer()
vector<float> BNO055::getMagnetometer()
{
static float v[3];
getMagnetometer(&v[0], &v[1], &v[2]);
return v;
float v[3];
getMagnetometer(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::getGyroscope(float *x, float *y, float *z)
{
if (x)
*x = m_gyrX / m_gyrUnitScale;
if (y)
*y = m_gyrY / m_gyrUnitScale;
if (z)
*z = m_gyrZ / m_gyrUnitScale;
bno055_get_gyroscope(m_bno055, x, y, z);
}
float *BNO055::getGyroscope()
vector<float> BNO055::getGyroscope()
{
static float v[3];
getGyroscope(&v[0], &v[1], &v[2]);
return v;
float v[3];
getGyroscope(&v[0], &v[1], &v[2]);
return vector<float>(v, v+3);
}
void BNO055::setAccelerationConfig(ACC_RANGE_T range, ACC_BW_T bw,
ACC_PWR_MODE_T pwr)
void BNO055::setAccelerationConfig(BNO055_ACC_RANGE_T range,
BNO055_ACC_BW_T bw,
BNO055_ACC_PWR_MODE_T pwr)
{
setPage(1);
uint8_t reg = ((range << _ACC_CONFIG_ACC_RANGE_SHIFT) |
(bw << _ACC_CONFIG_ACC_BW_SHIFT) |
(pwr << _ACC_CONFIG_ACC_PWR_MODE_SHIFT));
writeReg(REG_ACC_CONFIG, reg);
bno055_set_acceleration_config(m_bno055, range, bw, pwr);
}
void BNO055::setMagnetometerConfig(MAG_ODR_T odr, MAG_OPR_T opr,
MAG_POWER_T pwr)
void BNO055::setMagnetometerConfig(BNO055_MAG_ODR_T odr,
BNO055_MAG_OPR_T opr,
BNO055_MAG_POWER_T pwr)
{
setPage(1);
uint8_t reg = ((odr << _MAG_CONFIG_MAG_ODR_SHIFT) |
(opr << _MAG_CONFIG_MAG_OPR_MODE_SHIFT) |
(pwr << _MAG_CONFIG_MAG_POWER_MODE_SHIFT));
writeReg(REG_MAG_CONFIG, reg);
bno055_set_magnetometer_config(m_bno055, odr, opr, pwr);
}
void BNO055::setGyroscopeConfig(GYR_RANGE_T range, GYR_BW_T bw,
GYR_POWER_MODE_T pwr)
void BNO055::setGyroscopeConfig(BNO055_GYR_RANGE_T range,
BNO055_GYR_BW_T bw,
BNO055_GYR_POWER_MODE_T pwr)
{
setPage(1);
uint8_t reg = ((range << _GYR_CONFIG0_GYR_RANGE_SHIFT) |
(bw << _GYR_CONFIG0_GYR_BW_SHIFT));
writeReg(REG_GYR_CONFIG0, reg);
reg = (pwr << _GYR_CONFIG1_GYR_POWER_MODE_SHIFT);
writeReg(REG_GYR_CONFIG1, reg);
bno055_set_gyroscope_config(m_bno055, range, bw, pwr);
}
#if defined(SWIGJAVA) || (JAVACALLBACK)
void BNO055::installISR(int gpio, mraa::Edge level,
jobject runnable)
{
// delete any existing ISR and GPIO context
uninstallISR();
// create gpio context
m_gpioIntr = new mraa::Gpio(gpio);
m_gpioIntr->dir(mraa::DIR_IN);
m_gpioIntr->isr(level, runnable);
}
#else
void BNO055::installISR(int gpio, mraa::Edge level,
void BNO055::installISR(int gpio, mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
// delete any existing ISR and GPIO context
uninstallISR();
// create gpio context
m_gpioIntr = new mraa::Gpio(gpio);
m_gpioIntr->dir(mraa::DIR_IN);
m_gpioIntr->isr(level, isr, arg);
if (bno055_install_isr(m_bno055, gpio, level, isr, arg))
throw std::runtime_error(string(__FUNCTION__)
+ ": bno055_install_isr() failed");
}
#endif
void BNO055::uninstallISR()
{
if (m_gpioIntr)
{
m_gpioIntr->isrExit();
delete m_gpioIntr;
m_gpioIntr = 0;
}
bno055_uninstall_isr(m_bno055);
}

676
src/bno055/bno055.h Normal file
View File

@ -0,0 +1,676 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <upm.h>
#include <mraa/i2c.h>
#include <mraa/gpio.h>
#include "bno055_regs.h"
#define BNO055_DEFAULT_I2C_BUS 0
#define BNO055_DEFAULT_ADDR 0x28
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file bno055.h
* @library bno055
* @brief C API for the bno055 driver
*
* @include bno055.c
*/
/**
* Device context
*/
typedef struct _bno055_context {
mraa_i2c_context i2c;
mraa_gpio_context gpio;
// always stored in C
float temperature;
int currentPage;
BNO055_OPERATION_MODES_T currentMode;
// uncompensated data
// mag data
float magX;
float magY;
float magZ;
// acc data
float accX;
float accY;
float accZ;
// acc units
float accUnitScale;
// gyr data
float gyrX;
float gyrY;
float gyrZ;
// gyr units
float gyrUnitScale;
// eul (euler angle) data
float eulHeading;
float eulRoll;
float eulPitch;
// eul units
float eulUnitScale;
// qua (quaternion) data
float quaW;
float quaX;
float quaY;
float quaZ;
// lia (linear acceleration) data
float liaX;
float liaY;
float liaZ;
// grv (gravity vector) data
float grvX;
float grvY;
float grvZ;
} *bno055_context;
/**
* BNO055 initialization.
*
* By default, this function sets the acceleration units to m/s^2,
* gyro and Euler units to degrees, and temperature to celsius.
* It then enters the NDOF fusion mode.
*
* In addition, the internal clock is used so that compatibility
* with other implementations is assured. If you are using a
* device with an external clock, call setClockExternal(true) to
* enable it.
*
* @param bus I2C bus to use.
* @param address The I2C address for this device.
* @return The device context, or NULL if an error occurred.
*/
bno055_context bno055_init(int bus, uint8_t addr);
/**
* BNO055 close function.
*
* @param dev The device context.
*/
void bno055_close(bno055_context dev);
/**
* Update the internal stored values from sensor data.
*
* @param dev The device context.
* @return UPM result.
*/
upm_result_t bno055_update(const bno055_context dev);
/**
* Return the chip ID.
*
* @param dev The device context.
* @return The chip ID (BNO055_CHIPID).
*/
uint8_t bno055_get_chip_id(const bno055_context dev);
/**
* Return the accelerometer chip ID.
*
* @param dev The device context.
* @return The chip ID.
*/
uint8_t bno055_get_acc_id(const bno055_context dev);
/**
* Return the magnetometer chip ID.
*
* @param dev The device context.
* @return The chip ID.
*/
uint8_t bno055_get_mag_id(const bno055_context dev);
/**
* Return the gyroscope chip ID.
*
* @param dev The device context.
* @return The chip ID.
*/
uint8_t bno055_get_gyr_id(const bno055_context dev);
/**
* Return the fusion firmware revison.
*
* @param dev The device context.
* @return The firmware revison.
*/
uint16_t bno055_get_sw_revision(const bno055_context dev);
/**
* Return the bootloader ID.
*
* @param dev The device context.
* @return The bootloader ID.
*/
uint8_t bno055_get_bootloader_id(const bno055_context dev);
/**
* Enable or disables the use of the external clock. The Adafriut
* device does contain an external clock which might be more
* stable. By default, the internal clock is used.
*
* @param dev The device context.
* @param extClock true to use external clock, false otherwise.
*/
void bno055_set_clock_external(const bno055_context dev, bool extClock);
/**
* Select the temperature source. This can be the accelerometer
* or the gyroscope. By default, the accelerometer temperature is
* used as the source.
*
* @param dev The device context.
* @param src One of the TEMP_SOURCES_T values.
*/
void bno055_set_temperature_source(const bno055_context dev,
BNO055_TEMP_SOURCES_T src);
/**
* Set the temperature units of the device to Celsius (always).
*
* @param dev The device context.
*/
void bno055_set_temperature_units_celsius(const bno055_context dev);
/**
* Set the operating mode for the device. This places the device
* into a config mode, one of 7 non-fusion modes, or one of 5
* fusion modes. All stored sensor data is cleared when switching
* modes. The device must be in config mode for most
* configuration operations. See the datasheet for details.
*
* @param dev The device context.
* @param mode One of the OPERATION_MODES_T values.
*/
void bno055_set_operation_mode(const bno055_context dev,
BNO055_OPERATION_MODES_T mode);
/**
* Reboot the sensor. This is equivalent to a power on reset.
* All calibration data will be lost, and the device must be
* re-calibrated.
*
* @param dev The device context.
*/
void bno055_reset_system(const bno055_context dev);
/**
* Read the calibration status registers and return them. The
* values range from 0 (uncalibrated) to 3 (fully calibrated).
*
* @param dev The device context.
* @param mag The calibration status of the magnetometer.
* @param acc The calibration status of the accelerometer.
* @param mag The calibration status of the gyroscope.
* @param mag The calibration status of the overall system.
*/
void bno055_get_calibration_status(const bno055_context dev,
int *mag, int *acc,
int *gyr, int *sys);
/**
* Read the calibration status registers and return true or false,
* indicating whether all of the calibration parameters are fully
* calibrated.
*
* @param dev The device context.
* @return true if all 4 calibration parameters are fully
* calibrated, else false.
*/
bool bno055_is_fully_calibrated(const bno055_context dev);
/**
* Read the calibration data and place it into a buffer. The
* buffer must be BNO055_CALIBRATION_DATA_SIZE bytes in size.
* This data can then be saved for later reuse by
* bno055_write_calibration_data() to restore calibration data
* after a reset. Note: bno055_is_fully_calibrated() (calibration
* is complete) must be true or an error will result.
*
* @param dev The device context.
* @param data A pointer to a buffer to hold the calibration data.
* This buffer must be BNO055_CALIBRATION_DATA_SIZE bytes in
* length.
* @param len The length of the buffer. An error will be returned
* if the length is not equal to BNO055_CALIBRATION_DATA_SIZE.
* @return UPM result.
*/
upm_result_t bno055_read_calibration_data(const bno055_context dev,
uint8_t *data, size_t len);
/**
* Write previously saved calibration data to the calibration
* registers. The array containing the data must be
* BNO055_CALIBRATION_DATA_SIZE bytes in size.
*
* @param dev The device context.
* @param data uint8_t array representing calibration data, as obtained
* by bno055_read_calibration_data().
* @param len The length of the supplied buffer. An error will be
* returned if the length is not equal to BNO055_CALIBRATION_DATA_SIZE.
* @return UPM result.
*/
upm_result_t bno055_write_calibration_data(const bno055_context dev,
uint8_t *data,
size_t len);
/**
* Return the current measured temperature. Note, this is not
* ambient temperature - this is the temperature of the selected
* source on the chip. update() must have been called prior to
* calling this method.
*
* @param dev The device context.
* @return The temperature in degrees Celsius.
*/
float bno055_get_temperature(const bno055_context dev);
/**
* Return current orientation fusion data in the form of Euler
* Angles. By default, the returned values are in degrees.
* update() must have been called prior to calling this method.
*
* @param dev The device context.
* @param heading Pointer to a floating point value that will have
* the current heading angle placed into it.
* @param roll Pointer to a floating point value that will have
* the current roll angle placed into it.
* @param pitch Pointer to a floating point value that will have
* the current pitch angle placed into it.
*/
void bno055_get_euler_angles(const bno055_context dev, float *heading,
float *roll, float *pitch);
/**
* Return current orientation fusion data in the form of
* Quaternions. update() must have been called prior to calling
* this method.
*
* @param dev The device context.
* @param w Pointer to a floating point value that will have
* the current w component placed into it.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_quaternions(const bno055_context dev, float *w, float *x,
float *y, float *z);
/**
* Return current orientation fusion data in the form of Linear
* Acceleration. By default the returned values are in meters
* per-second squared (m/s^2). update() must have been called
* prior to calling this method.
*
* @param dev The device context.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_linear_acceleration(const bno055_context dev, float *x,
float *y, float *z);
/**
* Return current orientation fusion data in the form of a Gravity
* Vector per-axis. By default the returned values are in meters
* per-second squared (m/s^2). update() must have been called
* prior to calling this method.
*
* @param dev The device context.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_gravity_vectors(const bno055_context dev,
float *x, float *y, float *z);
/**
* Return accelerometer data (non-fusion). In fusion modes, this
* data will be of little value. By default the returned values
* are in meters per-second squared (m/s^2). update() must have
* been called prior to calling this method.
*
* @param dev The device context.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_accelerometer(const bno055_context dev, float *x, float *y,
float *z);
/**
* Return magnetometer data (non-fusion). In fusion modes, this
* data will be of little value. The returned values are in
* micro-teslas (uT). update() must have been called prior to
* calling this method.
*
* @param dev The device context.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_magnetometer(const bno055_context dev, float *x, float *y,
float *z);
/**
* Return gyroscope data (non-fusion). In fusion modes, this data
* will be of little value. By default the returned values are in
* meters per-second squared (m/s^2). update() must have been
* called prior to calling this method.
*
* @param dev The device context.
* @param x Pointer to a floating point value that will have
* the current x component placed into it.
* @param y Pointer to a floating point value that will have
* the current y component placed into it.
* @param z Pointer to a floating point value that will have
* the current z component placed into it.
*/
void bno055_get_gyroscope(const bno055_context dev,
float *x, float *y, float *z);
/**
* Set the bandwidth, range, and power modes of the accelerometer.
* In fusion modes, these values will be ignored.
*
* @param dev The device context.
* @param range One of the BNO055_ACC_RANGE_T values.
* @param bw One of the BNO055_ACC_BW_T values.
* @param pwr One of the BNO055_ACC_PWR_MODE_T values.
*/
void bno055_set_acceleration_config(const bno055_context dev,
BNO055_ACC_RANGE_T range,
BNO055_ACC_BW_T bw,
BNO055_ACC_PWR_MODE_T pwr);
/**
* Set the output data rate, operating mode and power mode of the
* magnetometer. In fusion modes, these values will be ignored.
*
* @param dev The device context.
* @param odr One of the BNO055_MAG_ODR_T values.
* @param opr One of the BNO055_MAG_OPR_T values.
* @param pwr One of the BNO055_MAG_POWER_T values.
*/
void bno055_set_magnetometer_config(const bno055_context dev,
BNO055_MAG_ODR_T odr,
BNO055_MAG_OPR_T opr,
BNO055_MAG_POWER_T pwr);
/**
* Set the range, bandwidth and power modes of the gyroscope. In
* fusion modes, these values will be ignored.
*
* @param dev The device context.
* @param range One of the BNO055_GYR_RANGE_T values.
* @param bw One of the BNO055_GYR_BW_T values.
* @param pwr One of the BNO055_GYR_POWER_MODE_T values.
*/
void bno055_set_gyroscope_config(const bno055_context dev,
BNO055_GYR_RANGE_T range,
BNO055_GYR_BW_T bw,
BNO055_GYR_POWER_MODE_T pwr);
/**
* Set the unit of measurement for the accelerometer related
* sensor values. The choices are mg (milli-gravities) or meters
* per-second squared (m/s^2). The default is m/s^2.
*
* @param dev The device context.
* @param mg true for mg, false for m/s^2.
*/
void bno055_set_accelerometer_units(const bno055_context dev, bool mg);
/**
* Set the unit of measurement for the gyroscope related sensor
* values. The choices are degrees and radians. The default is
* degrees.
*
* @param dev The device context.
* @param radians true for radians, false for degrees.
*/
void bno055_set_gyroscope_units(const bno055_context dev, bool radians);
/**
* Set the unit of measurement for the Euler Angle related sensor
* values. The choices are degrees and radians. The default is
* degrees.
*
* @param dev The device context.
* @param radians true for radians, false for degrees.
*/
void bno055_set_euler_units(const bno055_context dev, bool radians);
/**
* Reset all interrupt status bits and interrupt output.
*
* @param dev The device context.
*/
void bno055_reset_interrupt_status(const bno055_context dev);
/**
* Return the interrupt status register. This is a bitmask of the
* INT_STA_BITS_T bits.
*
* @param dev The device context.
* @return a bitmask of INT_STA_BITS_T bits.
*/
uint8_t bno055_get_interrupt_status(const bno055_context dev);
/**
* Return the interrupt enables register. This is a bitmask of the
* INT_STA_BITS_T bits.
*
* @param dev The device context.
* @return a bitmask of INT_STA_BITS_T bits currently set in the
* enable register.
*/
uint8_t bno055_get_interrupt_enable(const bno055_context dev);
/**
* Set the interrupt enable register. This is composed of a
* bitmask of the INT_STA_BITS_T bits.
*
* @param dev The device context.
* @param enables a bitmask of INT_STA_BITS_T bits to enable
*/
void bno055_set_interrupt_enable(const bno055_context dev,
uint8_t enables);
/**
* Return the interrupt mask register. This is a bitmask of the
* INT_STA_BITS_T bits. The interrupt mask is used to mask off
* enabled interrupts from generating a hardware interrupt. The
* interrupt status register can still be used to detect masked
* interrupts if they are enabled.
*
* @param dev The device context.
* @return a bitmask of INT_STA_BITS_T bits currently set in the
* interrupt mask register.
*/
uint8_t bno055_get_interrupt_mask(const bno055_context dev);
/**
* Set the interrupt mask register. This is a bitmask of the
* INT_STA_BITS_T bits. The interrupt mask is used to mask off
* enabled interrupts from generating a hardware interrupt. The
* interrupt status register can still be used to detect masked
* interrupts if they are enabled.
*
* @param dev The device context.
* @param a bitmask of INT_STA_BITS_T bits to set in the interrupt
* mask register.
*/
void bno055_set_interrupt_mask(const bno055_context dev, uint8_t mask);
/**
* Return the value of the system status register. This method
* can be used to determine the overall status of the device.
*
* @param dev The device context.
* @return One of the SYS_STATUS_T values.
*/
BNO055_SYS_STATUS_T bno055_get_system_status(const bno055_context dev);
/**
* Return the value of the system error register. This mathod can
* be used to determine a variety of system related error
* conditions.
*
* @param dev The device context.
* @return One of the SYS_ERR_T values.
*/
BNO055_SYS_ERR_T bno055_get_system_error(const bno055_context dev);
/**
* install an interrupt handler.
*
* @param dev The device context.
* @param gpio The GPIO pin to use as interrupt pin.
* @param level The interrupt trigger level (one of mraa_gpio_edge_t
* values). Make sure that you have configured the interrupt pin
* properly (on the device) for whatever level method you choose.
* @param isr The interrupt handler, accepting a void * argument.
* @param arg The argument to pass the the interrupt handler.
* @return UPM result.
*/
upm_result_t bno055_install_isr(const bno055_context dev,
int gpio, mraa_gpio_edge_t level,
void (*isr)(void *), void *arg);
/**
* uninstall a previously installed interrupt handler
*
* @param dev The device context.
*/
void bno055_uninstall_isr(const bno055_context dev);
/**
* Set the current internal device register page. This is a low
* level function and should not be used unless you know what you
* are doing.
*
* @param dev The device context.
* @param page The page number to set. This can only be 0 or 1.
* @param force If true, force the device page state to match
* indicated internal page state regardless of current state.
* @return UPM result.
*/
upm_result_t bno055_set_page(const bno055_context dev, uint8_t page,
bool force);
/**
* Read a register. This is a low level function and should not
* be used unless you know what you are doing.
*
* @param dev The device context.
* @param reg The register to read
* @return The value of the register
*/
uint8_t bno055_read_reg(const bno055_context dev, uint8_t reg);
/**
* Read contiguous registers into a buffer. This is a low level
* function and should not be used unless you know what you are
* doing.
*
* @param dev The device context.
* @param buffer The buffer to store the results
* @param len The number of registers to read
* @return UPM result.
*/
upm_result_t bno055_read_regs(const bno055_context dev, uint8_t reg,
uint8_t *buffer, size_t len);
/**
* Write to a register. This is a low level function and should
* not be used unless you know what you are doing.
*
* @param dev The device context.
* @param reg The register to write to
* @param val The value to write
* @return UPM result.
*/
upm_result_t bno055_write_reg(const bno055_context dev,
uint8_t reg, uint8_t val);
/**
* Write data to contiguous registers. This is a low level
* function and should not be used unless you know what you are
* doing.
*
* @param dev The device context.
* @param reg The starting register to write to
* @param buffer The buffer containing the data to write
* @param len The number of bytes to write
* @return UPM result.
*/
upm_result_t bno055_write_regs(const bno055_context dev, uint8_t reg,
uint8_t *buffer, size_t len);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

825
src/bno055/bno055_regs.h Normal file
View File

@ -0,0 +1,825 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016-2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#define BNO055_DEFAULT_I2C_BUS 0
#define BNO055_DEFAULT_ADDR 0x28
// The chip ID, for verification in bno055_init().
#define BNO055_CHIPID 0xa0
// number of bytes of stored calibration data
#define BNO055_CALIBRATION_DATA_SIZE (22)
#ifdef __cplusplus
extern "C" {
#endif
// NOTE: Reserved registers should not be written into. Reading
// from them will return indeterminate values.
//
// The register map is divided into two pages - page 1 contains
// sensor specific configuration registers, and page 0 contains all
// other configuration data and sensor output registers.
/**
* BNO055 registers
*/
typedef enum {
// The first register listed here is the page ID register. It
// is the same on both pages, and selects or indicates the
// currently active register page.
BNO055_REG_PAGE_ID = 0x07,
// Page 0
BNO055_REG_CHIP_ID = 0x00,
BNO055_REG_ACC_ID = 0x01, // accel id
BNO055_REG_MAG_ID = 0x02, // mag id
BNO055_REG_GYR_ID = 0x03, // gyro id
BNO055_REG_SW_REV_ID_LSB = 0x04,
BNO055_REG_SW_REV_ID_MSB = 0x05,
BNO055_REG_BL_REV_ID = 0x06, // bootloader rev
BNO055_REG_ACC_DATA_X_LSB = 0x08,
BNO055_REG_ACC_DATA_X_MSB = 0x09,
BNO055_REG_ACC_DATA_Y_LSB = 0x0a,
BNO055_REG_ACC_DATA_Y_MSB = 0x0b,
BNO055_REG_ACC_DATA_Z_LSB = 0x0c,
BNO055_REG_ACC_DATA_Z_MSB = 0x0d,
BNO055_REG_MAG_DATA_X_LSB = 0x0e,
BNO055_REG_MAG_DATA_X_MSB = 0x0f,
BNO055_REG_MAG_DATA_Y_LSB = 0x10,
BNO055_REG_MAG_DATA_Y_MSB = 0x11,
BNO055_REG_MAG_DATA_Z_LSB = 0x12,
BNO055_REG_MAG_DATA_Z_MSB = 0x13,
BNO055_REG_GYR_DATA_X_LSB = 0x14,
BNO055_REG_GYR_DATA_X_MSB = 0x15,
BNO055_REG_GYR_DATA_Y_LSB = 0x16,
BNO055_REG_GYR_DATA_Y_MSB = 0x17,
BNO055_REG_GYR_DATA_Z_LSB = 0x18,
BNO055_REG_GYR_DATA_Z_MSB = 0x19,
// euler angles
BNO055_REG_EUL_HEADING_LSB = 0x1a,
BNO055_REG_EUL_HEADING_MSB = 0x1b,
BNO055_REG_EUL_ROLL_LSB = 0x1c,
BNO055_REG_EUL_ROLL_MSB = 0x1d,
BNO055_REG_EUL_PITCH_LSB = 0x1e,
BNO055_REG_EUL_PITCH_MSB = 0x1f,
// Quaternions
BNO055_REG_QUA_DATA_W_LSB = 0x20,
BNO055_REG_QUA_DATA_W_MSB = 0x21,
BNO055_REG_QUA_DATA_X_LSB = 0x22,
BNO055_REG_QUA_DATA_X_MSB = 0x23,
BNO055_REG_QUA_DATA_Y_LSB = 0x24,
BNO055_REG_QUA_DATA_Y_MSB = 0x25,
BNO055_REG_QUA_DATA_Z_LSB = 0x26,
BNO055_REG_QUA_DATA_Z_MSB = 0x27,
// linear accel data
BNO055_REG_LIA_DATA_X_LSB = 0x28,
BNO055_REG_LIA_DATA_X_MSB = 0x29,
BNO055_REG_LIA_DATA_Y_LSB = 0x2a,
BNO055_REG_LIA_DATA_Y_MSB = 0x2b,
BNO055_REG_LIA_DATA_Z_LSB = 0x2c,
BNO055_REG_LIA_DATA_Z_MSB = 0x2d,
// gravity vector
BNO055_REG_GRV_DATA_X_LSB = 0x2e,
BNO055_REG_GRV_DATA_X_MSB = 0x2f,
BNO055_REG_GRV_DATA_Y_LSB = 0x30,
BNO055_REG_GRV_DATA_Y_MSB = 0x31,
BNO055_REG_GRV_DATA_Z_LSB = 0x32,
BNO055_REG_GRV_DATA_Z_MSB = 0x33,
BNO055_REG_TEMPERATURE = 0x34,
BNO055_REG_CALIB_STAT = 0x35, // calibration status
BNO055_REG_ST_RESULT = 0x36, // selftest result
BNO055_REG_INT_STA = 0x37, // interrupt status
BNO055_REG_SYS_CLK_STATUS = 0x38,
BNO055_REG_SYS_STATUS = 0x39,
BNO055_REG_SYS_ERROR = 0x3a,
BNO055_REG_UNIT_SEL = 0x3b,
// 0x3c reserved
BNO055_REG_OPER_MODE = 0x3d, // operating mode
BNO055_REG_POWER_MODE = 0x3e,
BNO055_REG_SYS_TRIGGER = 0x3f,
BNO055_REG_TEMP_SOURCE = 0x40, // temperature src
BNO055_REG_AXIS_MAP_CONFIG = 0x41,
BNO055_REG_AXIS_MAP_SIGN = 0x42,
// 0x43-0x54 reserved
// stored calibration data
BNO055_REG_ACC_OFFSET_X_LSB = 0x55,
BNO055_REG_ACC_OFFSET_X_MSB = 0x56,
BNO055_REG_ACC_OFFSET_Y_LSB = 0x57,
BNO055_REG_ACC_OFFSET_Y_MSB = 0x58,
BNO055_REG_ACC_OFFSET_Z_LSB = 0x59,
BNO055_REG_ACC_OFFSET_Z_MSB = 0x5a,
BNO055_REG_MAG_OFFSET_X_LSB = 0x5b,
BNO055_REG_MAG_OFFSET_X_MSB = 0x5c,
BNO055_REG_MAG_OFFSET_Y_LSB = 0x5d,
BNO055_REG_MAG_OFFSET_Y_MSB = 0x5e,
BNO055_REG_MAG_OFFSET_Z_LSB = 0x5f,
BNO055_REG_MAG_OFFSET_Z_MSB = 0x60,
BNO055_REG_GYR_OFFSET_X_LSB = 0x61,
BNO055_REG_GYR_OFFSET_X_MSB = 0x62,
BNO055_REG_GYR_OFFSET_Y_LSB = 0x63,
BNO055_REG_GYR_OFFSET_Y_MSB = 0x64,
BNO055_REG_GYR_OFFSET_Z_LSB = 0x65,
BNO055_REG_GYR_OFFSET_Z_MSB = 0x66,
BNO055_REG_ACC_RADIUS_LSB = 0x67,
BNO055_REG_ACC_RADIUS_MSB = 0x68,
BNO055_REG_MAG_RADIUS_LSB = 0x69,
BNO055_REG_MAG_RADIUS_MSB = 0x6a,
// 0x6b-0x7f reserved
// end of page 0
// Page 1
// 0x00-0x06 reserved
// 0x07 - page id
BNO055_REG_ACC_CONFIG = 0x08,
BNO055_REG_MAG_CONFIG = 0x09,
BNO055_REG_GYR_CONFIG0 = 0x0a,
BNO055_REG_GYR_CONFIG1 = 0x0b,
BNO055_REG_ACC_SLEEP_CONFIG = 0x0c,
BNO055_REG_GYR_SLEEP_CONFIG = 0x0d,
// 0x0e reserved
BNO055_REG_INT_MSK = 0x0f,
BNO055_REG_INT_EN = 0x10,
BNO055_REG_ACC_AM_THRES = 0x11,
BNO055_REG_ACC_INT_SETTINGS = 0x12,
BNO055_REG_ACC_HG_DURATION = 0x13,
BNO055_REG_ACC_HG_THRES = 0x14,
BNO055_REG_ACC_NM_THRES = 0x15,
BNO055_REG_ACC_NM_SET = 0x16,
BNO055_REG_GYR_INT_SETTING = 0x17,
BNO055_REG_GYR_HR_X_SET = 0x18,
BNO055_REG_GYR_DUR_X = 0x19,
BNO055_REG_GYR_HR_Y_SET = 0x1a,
BNO055_REG_GYR_DUR_Y = 0x1b,
BNO055_REG_GYR_HR_Z_SET = 0x1c,
BNO055_REG_GYR_DUR_Z = 0x1d,
BNO055_REG_GYR_AM_THRES = 0x1e,
BNO055_REG_GYR_AM_SET = 0x1f,
// 0x20-0x4f reserved
// 16 byte (0x50-0x5f) unique ID
BNO055_REG_BNO_UNIQUE_ID = 0x50
// 0x60-0x7f reserved
} BNO055_REGS_T;
// Page 0 register enumerants
/**
* BNO055_REG_CALIB_STAT bits
*/
typedef enum {
BNO055_CALIB_STAT_MAG0 = 0x01,
BNO055_CALIB_STAT_MAG1 = 0x02,
_BNO055_CALIB_STAT_MAG_MASK = 3,
_BNO055_CALIB_STAT_MAG_SHIFT = 0,
BNO055_CALIB_STAT_ACC0 = 0x04,
BNO055_CALIB_STAT_ACC1 = 0x08,
_BNO055_CALIB_STAT_ACC_MASK = 3,
_BNO055_CALIB_STAT_ACC_SHIFT = 2,
BNO055_CALIB_STAT_GYR0 = 0x10,
BNO055_CALIB_STAT_GYR1 = 0x20,
_BNO055_CALIB_STAT_GYR_MASK = 3,
_BNO055_CALIB_STAT_GYR_SHIFT = 4,
BNO055_CALIB_STAT_SYS0 = 0x40,
BNO055_CALIB_STAT_SYS1 = 0x80,
_BNO055_CALIB_STAT_SYS_MASK = 3,
_BNO055_CALIB_STAT_SYS_SHIFT = 6
} BNO055_CALIB_STAT_BITS_T;
/**
* BNO055_REG_ST_RESULT bits
*/
typedef enum {
BNO055_ST_RESULT_ACC = 0x01,
BNO055_ST_RESULT_MAG = 0x02,
BNO055_ST_RESULT_GYR = 0x04,
BNO055_ST_RESULT_MCU = 0x08
// 0x10-0x80 reserved
} BNO055_ST_RESULT_BITS_T;
/**
* BNO055_REG_INT_STA bits
*/
typedef enum {
// 0x01-0x02 reserved
BNO055_INT_STA_GYRO_AM = 0x04, // gyro any-motion
BNO055_INT_STA_GYR_HIGH_RATE = 0x08,
// 0x010 reserved
BNO055_INT_STA_ACC_HIGH_G = 0x20,
BNO055_INT_STA_ACC_AM = 0x40, // accel any-motion
BNO055_INT_STA_ACC_NM = 0x80 // accel no-motion
} BNO055_INT_STA_BITS_T;
/**
* BNO055_REG_SYS_CLK_STATUS bits
*/
typedef enum {
BNO055_SYS_CLK_STATUS_ST_MAIN_CLK = 0x01
// 0x02-0x80 reserved
} BNO055_SYS_CLK_STATUS_BITS_T;
/**
* BNO055_REG_SYS_STATUS values
*/
typedef enum {
BNO055_SYS_STATUS_IDLE = 0,
BNO055_SYS_STATUS_SYS_ERR = 1,
BNO055_SYS_STATUS_INIT_PERIPHERALS = 2,
BNO055_SYS_STATUS_SYSTEM_INIT = 3,
BNO055_SYS_STATUS_EXECUTING_SELFTEST = 4,
BNO055_SYS_STATUS_FUSION_RUNNING = 5,
BNO055_SYS_STATUS_NO_FUSION_RUNNING = 6
} BNO055_SYS_STATUS_T;
/**
* BNO055_REG_SYS_ERR values
*/
typedef enum {
BNO055_SYS_ERR_NOERROR = 0,
BNO055_SYS_ERR_PERIPH_INIT_ERROR = 1,
BNO055_SYS_ERR_SYS_INIT_ERROR = 2,
BNO055_SYS_ERR_SELFTEST_FAIL_ERROR = 3,
BNO055_SYS_ERR_REG_VAL_OUTOFRANGE_ERROR = 4,
BNO055_SYS_ERR_REG_ADDR_OUTOFRANGE_ERROR = 5,
BNO055_SYS_ERR_REG_WRITE_ERROR = 6,
BNO055_SYS_ERR_LP_MODE_NOT_AVAIL_ERROR = 7,
BNO055_SYS_ERR_ACC_PWR_MODE_NOT_AVAIL_ERROR = 8,
BNO055_SYS_ERR_FUSION_CONFIG_ERROR = 9,
BNO055_SYS_ERR_SENSOR_CONFIG_ERROR = 10
} BNO055_SYS_ERR_T;
/**
* BNO055_REG_UNIT_SEL bits
*/
typedef enum {
BNO055_UNIT_SEL_ACC_UNIT = 0x01, // 0=m/s^2, 1=mg
BNO055_UNIT_SEL_GYR_UNIT = 0x02, // 0=dps, 1=rps
BNO055_UNIT_SEL_EUL_UNIT = 0x04, // 0=degrees, 1=radians
// 0x08 reserved
BNO055_UNIT_SEL_TEMP_UNIT = 0x10, // 0=C, 1=F
// 0x20-0x40 reserved
BNO055_UNIT_SEL_ORI_ANDROID_WINDOWS = 0x80 // 0=windows
// orient,
// 1=android
} BNO055_UNIT_SEL_BITS_T;
/**
* BNO055_REG_OPR_MODE bits
*/
typedef enum {
BNO055_OPR_MODE_OPERATION_MODE0 = 0x01,
BNO055_OPR_MODE_OPERATION_MODE1 = 0x02,
BNO055_OPR_MODE_OPERATION_MODE2 = 0x04,
BNO055_OPR_MODE_OPERATION_MODE3 = 0x08,
_BNO055_OPR_MODE_OPERATION_MODE_MASK = 15,
_BNO055_OPR_MODE_OPERATION_MODE_SHIFT = 0
// 0x10-0x80 reserved
} BNO055_OPR_MODE_BITS_T;
/**
* BNO055_OPR_MODE_OPERATION values
*/
typedef enum {
BNO055_OPERATION_MODE_CONFIGMODE = 0,
BNO055_OPERATION_MODE_ACCONLY = 1,
BNO055_OPERATION_MODE_MAGONLY = 2,
BNO055_OPERATION_MODE_GYROONLY = 3,
BNO055_OPERATION_MODE_ACCMAG = 4,
BNO055_OPERATION_MODE_ACCGYRO = 5,
BNO055_OPERATION_MODE_MAGGYRO = 6,
BNO055_OPERATION_MODE_AMG = 7,
// fusion modes
BNO055_OPERATION_MODE_IMU = 8,
BNO055_OPERATION_MODE_COMPASS = 9,
BNO055_OPERATION_MODE_M4G = 10,
BNO055_OPERATION_MODE_NDOF_FMC_OFF = 11,
BNO055_OPERATION_MODE_NDOF = 12
} BNO055_OPERATION_MODES_T;
/**
* BNO055_REG_PWR_MODE bits
*/
typedef enum {
BNO055_PWR_MODE_POWER_MODE0 = 0x01,
BNO055_PWR_MODE_POWER_MODE1 = 0x02,
_BNO055_PWR_MODE_POWER_MODE_MASK = 3,
_BNO055_PWR_MODE_POWER_MODE_SHIFT = 0
// 0x04-0x80 reserved
} BNO055_PWR_MODE_BITS_T;
/**
* BNO055_POWER_MODE values
*/
typedef enum {
BNO055_POWER_MODE_NORMAL = 0,
BNO055_POWER_MODE_LOW = 1,
BNO055_POWER_MODE_SUSPEND = 2
} POWER_MODES_T;
/**
* BNO055_REG_SYS_TRIGGER bits
*/
typedef enum {
BNO055_SYS_TRIGGER_SELF_TEST = 0x01,
// 0x02-0x10 reserved
BNO055_SYS_TRIGGER_RST_SYS = 0x20,
BNO055_SYS_TRIGGER_RST_INT = 0x40,
BNO055_SYS_TRIGGER_CLK_SEL = 0x80
} BNO055_SYS_TRIGGER_BITS_T;
/**
* BNO055_REG_TEMP_SOURCE bits
*/
typedef enum {
BNO055_TEMP_SOURCE_TEMP_SOURCE0 = 0x01,
BNO055_TEMP_SOURCE_TEMP_SOURCE1 = 0x02,
_BNO055_TEMP_SOURCE_TEMP_SOURCE_MASK = 3,
_BNO055_TEMP_SOURCE_TEMP_SOURCE_SHIFT = 0
// 0x04-0x80 reserved
} BNO055_TEMP_SOURCE_BITS_T;
/**
* BNO055_TEMP_SOURCE values
*/
typedef enum {
BNO055_TEMP_SOURCE_ACC = 0,
BNO055_TEMP_SOURCE_GYR = 1
} BNO055_TEMP_SOURCES_T;
/**
* BNO055_REG_AXIS_MAP_CONFIG bits
*/
typedef enum {
BNO055_AXIS_MAP_CONFIG_REMAPPED_X_VAL0 = 0x01,
BNO055_AXIS_MAP_CONFIG_REMAPPED_X_VAL1 = 0x02,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_X_VAL_MASK = 3,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_X_VAL_SHIFT = 0,
BNO055_AXIS_MAP_CONFIG_REMAPPED_Y_VAL0 = 0x04,
BNO055_AXIS_MAP_CONFIG_REMAPPED_Y_VAL1 = 0x08,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_Y_VAL_MASK = 3,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_Y_VAL_SHIFT = 2,
BNO055_AXIS_MAP_CONFIG_REMAPPED_Z_VAL0 = 0x10,
BNO055_AXIS_MAP_CONFIG_REMAPPED_Z_VAL1 = 0x20,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_Z_VAL_MASK = 3,
_BNO055_AXIS_MAP_CONFIG_REMAPPED_Z_VAL_SHIFT = 4
// 0x40-0x80 reserved
} BNO055_AXIS_MAP_CONFIG_BITS_T;
/**
* REMAPPED_AXIS values, applied to X, Y, and Z axes
* (BNO055_REG_AXIS_MAP_CONFIG)
*/
typedef enum {
BNO055_REMAPPED_AXIS_X = 0,
BNO055_REMAPPED_AXIS_Y = 1,
BNO055_REMAPPED_AXIS_Z = 2
} BNO055_REMAPPED_AXIS_T;
/**
* BNO055_REG_AXIS_MAP_SIGN bits
*/
typedef enum {
BNO055_AXIS_MAP_SIGN_REMAPPED_Z_SIGN = 0x01,
BNO055_AXIS_MAP_SIGN_REMAPPED_Y_SIGN = 0x02,
BNO055_AXIS_MAP_SIGN_REMAPPED_X_SIGN = 0x04
// 0x08-0x80 reserved
} BNO055_AXIS_MAP_SIGN_BITS_T;
// Page 1 register enumerants
/**
* BNO055_REG_ACC_CONFIG bits
*/
typedef enum {
BNO055_ACC_CONFIG_ACC_RANGE0 = 0x01,
BNO055_ACC_CONFIG_ACC_RANGE1 = 0x02,
_BNO055_ACC_CONFIG_ACC_RANGE_MASK = 3,
_BNO055_ACC_CONFIG_ACC_RANGE_SHIFT = 0,
BNO055_ACC_CONFIG_ACC_BW0 = 0x04,
BNO055_ACC_CONFIG_ACC_BW1 = 0x08,
BNO055_ACC_CONFIG_ACC_BW2 = 0x10,
_BNO055_ACC_CONFIG_ACC_BW_MASK = 7,
_BNO055_ACC_CONFIG_ACC_BW_SHIFT = 2,
BNO055_ACC_CONFIG_ACC_PWR_MODE0 = 0x20,
BNO055_ACC_CONFIG_ACC_PWR_MODE1 = 0x40,
BNO055_ACC_CONFIG_ACC_PWR_MODE2 = 0x80,
_BNO055_ACC_CONFIG_ACC_PWR_MODE_MASK = 7,
_BNO055_ACC_CONFIG_ACC_PWR_MODE_SHIFT = 5
} BNO055_ACC_CONFIG_BITS_T;
/**
* BNO055_ACC_CONFIG_ACC_RANGE values
*/
typedef enum {
BNO055_ACC_RANGE_2G = 0,
BNO055_ACC_RANGE_4G = 1,
BNO055_ACC_RANGE_8G = 2,
BNO055_ACC_RANGE_16G = 3
} BNO055_ACC_RANGE_T;
/**
* BNO055_ACC_CONFIG_ACC_BW values
*/
typedef enum {
BNO055_ACC_BW_7_81 = 0, // 7.81 Hz
BNO055_ACC_BW_15_53 = 1,
BNO055_ACC_BW_31_25 = 2,
BNO055_ACC_BW_62_5 = 3,
BNO055_ACC_BW_125 = 4, // 125 Hz
BNO055_ACC_BW_250 = 5,
BNO055_ACC_BW_500 = 6,
BNO055_ACC_BW_1000 = 7
} BNO055_ACC_BW_T;
/**
* BNO055_ACC_PWR_MODE values
*/
typedef enum {
BNO055_ACC_PWR_MODE_NORMAL = 0,
BNO055_ACC_PWR_MODE_SUSPEND = 1,
BNO055_ACC_PWR_MODE_LOWPOWER1 = 2,
BNO055_ACC_PWR_MODE_STANDBY = 3,
BNO055_ACC_PWR_MODE_LOWPOWER2 = 4,
BNO055_ACC_PWR_MODE_DEEPSUSPEND = 5
} BNO055_ACC_PWR_MODE_T;
/**
* BNO055_REG_MAG_CONFIG bits
*/
typedef enum {
BNO055_MAG_CONFIG_MAG_ODR0 = 0x01,
BNO055_MAG_CONFIG_MAG_ODR1 = 0x02,
BNO055_MAG_CONFIG_MAG_ODR2 = 0x04,
_BNO055_MAG_CONFIG_MAG_ODR_MASK = 7,
_BNO055_MAG_CONFIG_MAG_ODR_SHIFT = 0,
BNO055_MAG_CONFIG_MAG_OPR_MODE0 = 0x08,
BNO055_MAG_CONFIG_MAG_OPR_MODE1 = 0x10,
_BNO055_MAG_CONFIG_MAG_OPR_MODE_MASK = 3,
_BNO055_MAG_CONFIG_MAG_OPR_MODE_SHIFT = 3,
BNO055_MAG_CONFIG_MAG_POWER_MODE0 = 0x20,
BNO055_MAG_CONFIG_MAG_POWER_MODE1 = 0x40,
_BNO055_MAG_CONFIG_MAG_POWER_MODE_MASK = 3,
_BNO055_MAG_CONFIG_MAG_POWER_MODE_SHIFT = 5
// 0x80 reserved
} BNO055_MAG_CONFIG_BITS_T;
/**
* MAG_ODR values
*/
typedef enum {
BNO055_MAG_ODR_2 = 0, // 2Hz
BNO055_MAG_ODR_6 = 1,
BNO055_MAG_ODR_8 = 2,
BNO055_MAG_ODR_10 = 3,
BNO055_MAG_ODR_15 = 4,
BNO055_MAG_ODR_20 = 5,
BNO055_MAG_ODR_25 = 6,
BNO055_MAG_ODR_30 = 7
} BNO055_MAG_ODR_T;
/**
* BNO055_MAG_OPR values
*/
typedef enum {
BNO055_MAG_OPR_LOW = 0, // low power
BNO055_MAG_OPR_REGULAR = 1,
BNO055_MAG_OPR_ENHANCED_REGULAR = 2,
BNO055_MAG_OPR_HIGH_ACCURACY = 3
} BNO055_MAG_OPR_T;
/**
* BNO055_MAG_POWER values
*/
typedef enum {
BNO055_MAG_POWER_NORMAL = 0,
BNO055_MAG_POWER_SLEEP = 1,
BNO055_MAG_POWER_SUSPEND = 2,
BNO055_MAG_POWER_FORCE_MODE = 3
} BNO055_MAG_POWER_T;
/**
* BNO055_REG_GYR_CONFIG0 bits
*/
typedef enum {
BNO055_GYR_CONFIG0_GYR_RANGE0 = 0x01,
BNO055_GYR_CONFIG0_GYR_RANGE1 = 0x02,
BNO055_GYR_CONFIG0_GYR_RANGE2 = 0x04,
_BNO055_GYR_CONFIG0_GYR_RANGE_MASK = 7,
_BNO055_GYR_CONFIG0_GYR_RANGE_SHIFT = 0,
BNO055_GYR_CONFIG0_GYR_BW0 = 0x08,
BNO055_GYR_CONFIG0_GYR_BW1 = 0x10,
BNO055_GYR_CONFIG0_GYR_BW2 = 0x20,
_BNO055_GYR_CONFIG0_GYR_BW_MASK = 7,
_BNO055_GYR_CONFIG0_GYR_BW_SHIFT = 3
// 0x40-0x80 reserved
} BNO055_GYR_CONFIG0_BITS_T;
/**
* BNO055_GYR_RANGE values
*/
typedef enum {
BNO055_GYR_RANGE_2000 = 0, // degrees/sec
BNO055_GYR_RANGE_1000 = 1,
BNO055_GYR_RANGE_500 = 2,
BNO055_GYR_RANGE_250 = 3,
BNO055_GYR_RANGE_125 = 4
} BNO055_GYR_RANGE_T;
/**
* BNO055_GYR_BW values
*/
typedef enum {
BNO055_GYR_BW_523 = 0, // Hz
BNO055_GYR_BW_230 = 1,
BNO055_GYR_BW_116 = 2,
BNO055_GYR_BW_47 = 3,
BNO055_GYR_BW_23 = 4,
BNO055_GYR_BW_12 = 5,
BNO055_GYR_BW_64 = 6,
BNO055_GYR_BW_32 = 7
} BNO055_GYR_BW_T;
/**
* BNO055_REG_GYR_CONFIG1 bits
*/
typedef enum {
BNO055_GYR_CONFIG1_GYR_POWER_MODE0 = 0x01,
BNO055_GYR_CONFIG1_GYR_POWER_MODE1 = 0x02,
BNO055_GYR_CONFIG1_GYR_POWER_MODE2 = 0x04,
_BNO055_GYR_CONFIG1_GYR_POWER_MODE_MASK = 7,
_BNO055_GYR_CONFIG1_GYR_POWER_MODE_SHIFT = 0
// 0x08-0x80 reserved
} BNO055_GYR_CONFIG1_BITS_T;
/**
* BNO055_GYR_POWER_MODE values
*/
typedef enum {
BNO055_GYR_POWER_MODE_NORMAL = 0,
BNO055_GYR_POWER_MODE_FAST_POWERUP = 1,
BNO055_GYR_POWER_MODE_DEEP_SUSPEND = 2,
BNO055_GYR_POWER_MODE_SUSPEND = 3,
BNO055_GYR_POWER_MODE_ADVANCED_POWERSAVE= 4
} BNO055_GYR_POWER_MODE_T;
/**
* BNO055_REG_ACC_SLEEP_CONFIG bits
*/
typedef enum {
BNO055_ACC_SLEEP_CONFIG_SLP_MODE = 0x01, // 0=event,
// 1=equidistant
// sample
BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR0 = 0x02,
BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR1 = 0x04,
BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR2 = 0x08,
BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR3 = 0x10,
_BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR_MASK = 15,
_BNO055_ACC_SLEEP_CONFIG_ACC_SLP_DUR_SHIFT = 1
// 0x20-0x80 reserved
} BNO055_ACC_SLEEP_CONFIG_BITS_T;
/**
* BNO055_ACC_SLP_DUR values
*/
typedef enum {
BNO055_ACC_SLP_DUR_0_5 = 0, // 0.5ms
// same for 1-5
BNO055_ACC_SLP_DUR_1 = 6, // 1ms
BNO055_ACC_SLP_DUR_2 = 7,
BNO055_ACC_SLP_DUR_4 = 8,
BNO055_ACC_SLP_DUR_6 = 9,
BNO055_ACC_SLP_DUR_10 = 10,
BNO055_ACC_SLP_DUR_25 = 11,
BNO055_ACC_SLP_DUR_50 = 12,
BNO055_ACC_SLP_DUR_100 = 13,
BNO055_ACC_SLP_DUR_500 = 14
// 15 = 1ms
} BNO055_ACC_SLP_DUR_T;
/**
* BNO055_REG_GYR_SLEEP_CONFIG bits
*/
typedef enum {
BNO055_GYR_SLEEP_CONFIG_GYR_SLEEP_DUR0 = 0x01,
BNO055_GYR_SLEEP_CONFIG_GYR_SLEEP_DUR1 = 0x02,
BNO055_GYR_SLEEP_CONFIG_GYR_SLEEP_DUR2 = 0x04,
_BNO055_GYR_SLEEP_CONFIG_GYR_SLEEP_DUR_MASK = 7,
_BNO055_GYR_SLEEP_CONFIG_GYR_SLEEP_DUR_SHIFT = 0,
BNO055_GYR_SLEEP_CONFIG_GYR_AUTO_SLP_DUR0 = 0x08,
BNO055_GYR_SLEEP_CONFIG_GYR_AUTO_SLP_DUR1 = 0x10,
BNO055_GYR_SLEEP_CONFIG_GYR_AUTO_SLP_DUR2 = 0x20,
_BNO055_GYR_SLEEP_CONFIG_GYR_AUTO_SLP_DUR_MASK = 7,
_BNO055_GYR_SLEEP_CONFIG_GYR_AUTO_SLP_DUR_SHIFT = 3
// 0x40-0x80 reserved
} BNO055_GYR_SLEEP_CONFIG_BITS_T;
/**
* BNO055_GYR_SLEEP_DUR values
*/
typedef enum {
BNO055_GYR_SLEEP_DUR_2 = 0, // 2ms
BNO055_GYR_SLEEP_DUR_4 = 1,
BNO055_GYR_SLEEP_DUR_5 = 2,
BNO055_GYR_SLEEP_DUR_8 = 3,
BNO055_GYR_SLEEP_DUR_10 = 4,
BNO055_GYR_SLEEP_DUR_15 = 5,
BNO055_GYR_SLEEP_DUR_18 = 6,
BNO055_GYR_SLEEP_DUR_20 = 7
} BNO055_GYR_SLEEP_DUR_T;
/**
* BNO055_GYR_AUTO_SLP_DUR values
*/
typedef enum {
// 0 = illegal
BNO055_GYR_AUTO_SLP_DUR_4 = 1, // ms
BNO055_GYR_AUTO_SLP_DUR_5 = 2,
BNO055_GYR_AUTO_SLP_DUR_8 = 3,
BNO055_GYR_AUTO_SLP_DUR_10 = 4,
BNO055_GYR_AUTO_SLP_DUR_15 = 5,
BNO055_GYR_AUTO_SLP_DUR_20 = 6,
BNO055_GYR_AUTO_SLP_DUR_40 = 7
} BNO055_GYR_AUTO_SLP_DUR_T;
/**
* BNO055_REG_INT_MSK and BNO055_REG_INT_EN bits
*/
typedef enum {
// 0x00-0x02 reserved
BNO055_INT_GYRO_AM = 0x04, // gyro any-motion
BNO055_INT_GYRO_HIGH_RATE = 0x08,
// 0x10 reserved
BNO055_INT_ACC_HIGH_G = 0x20,
BNO055_INT_ACC_AM = 0x40, // acc any-motion
BNO055_INT_ACC_NM = 0x80, // acc no-motion
} BNO055_INT_BITS_T;
/**
* BNO055_REG_ACC_INT_SETTINGS bits
*/
typedef enum {
BNO055_ACC_INT_SETTINGS_AM_DUR0 = 0x01,
BNO055_ACC_INT_SETTINGS_AM_DUR1 = 0x02,
_BNO055_ACC_INT_SETTINGS_AM_DUR_MASK = 3,
_BNO055_ACC_INT_SETTINGS_AM_DUR_SHIFT = 0,
BNO055_ACC_INT_SETTINGS_AM_NM_X_AXIS = 0x04,
BNO055_ACC_INT_SETTINGS_AM_NM_Y_AXIS = 0x08,
BNO055_ACC_INT_SETTINGS_AM_NM_Z_AXIS = 0x10,
BNO055_ACC_INT_SETTINGS_HG_X_AXIS = 0x20,
BNO055_ACC_INT_SETTINGS_HG_Y_AXIS = 0x40,
BNO055_ACC_INT_SETTINGS_HG_Z_AXIS = 0x80
} BNO055_ACC_INT_SETTINGS_BITS_T;
/**
* BNO055_REG_ACC_NM_SET bits
*/
typedef enum {
BNO055_ACC_NM_SET_SM_NM = 0x01, // 0=slowmotion,
// 1=nomotion
BNO055_ACC_NM_SET_SM_NM_DUR0 = 0x02,
BNO055_ACC_NM_SET_SM_NM_DUR1 = 0x04,
BNO055_ACC_NM_SET_SM_NM_DUR2 = 0x08,
BNO055_ACC_NM_SET_SM_NM_DUR3 = 0x10,
BNO055_ACC_NM_SET_SM_NM_DUR4 = 0x20,
BNO055_ACC_NM_SET_SM_NM_DUR5 = 0x40,
_BNO055_ACC_NM_SET_SM_NM_DUR_MASK = 63,
_BNO055_ACC_NM_SET_SM_NM_DUR_SHIFT = 1
// 0x80 reserved
} BNO055_ACC_NM_SET_BITS_T;
/**
* BNO055_REG_GYR_INT_SETTING bits
*/
typedef enum {
BNO055_GYR_INT_SETTING_AM_X_AXIS = 0x01,
BNO055_GYR_INT_SETTING_AM_Y_AXIS = 0x02,
BNO055_GYR_INT_SETTING_AM_Z_AXIS = 0x04,
BNO055_GYR_INT_SETTING_HR_X_AXIS = 0x08,
BNO055_GYR_INT_SETTING_HR_Y_AXIS = 0x10,
BNO055_GYR_INT_SETTING_HR_Z_AXIS = 0x20,
BNO055_GYR_INT_SETTING_AM_FILT = 0x40,
BNO055_GYR_INT_SETTING_HR_FILT = 0x80
} BNO055_GYR_INT_SETTING_BITS_T;
/**
* BNO055_REG_GYR_HR_X_SET, BNO055_REG_GYR_HR_Y_SET, and
* BNO055_REG_GYR_HR_Z_SET bits
*/
typedef enum {
BNO055_GYR_HR_XYZ_SET_HR_THRESH0 = 0x01,
BNO055_GYR_HR_XYZ_SET_HR_THRESH1 = 0x02,
BNO055_GYR_HR_XYZ_SET_HR_THRESH2 = 0x04,
BNO055_GYR_HR_XYZ_SET_HR_THRESH3 = 0x08,
BNO055_GYR_HR_XYZ_SET_HR_THRESH4 = 0x10,
_BNO055_GYR_HR_XYZ_SET_HR_THRESH_MASK = 31,
_BNO055_GYR_HR_XYZ_SET_HR_THRESH_SHIFT = 0,
BNO055_GYR_HR_XYZ_SET_HR_THRESH_HYST0 = 0x20,
BNO055_GYR_HR_XYZ_SET_HR_THRESH_HYST1 = 0x40,
_BNO055_GYR_HR_XYZ_SET_HR_THRESH_HYST_MASK = 3,
_BNO055_GYR_HR_XYZ_SET_HR_THRESH_HYST_SHIFT = 5
} BNO055_GYR_HR_XYZ_SET_BITS_T;
/**
* BNO055_REG_GYR_AM_SET bits
*/
typedef enum {
BNO055_GYR_AM_SET_SLOPE_SAMPLES0 = 0x01,
BNO055_GYR_AM_SET_SLOPE_SAMPLES1 = 0x02,
_BNO055_GYR_AM_SET_SLOPE_SAMPLES_MASK = 3,
_BNO055_GYR_AM_SET_SLOPE_SAMPLES_SHIFT = 0,
BNO055_GYR_AM_SET_AWAKE_DUR0 = 0x04,
BNO055_GYR_AM_SET_AWAKE_DUR1 = 0x08,
_BNO055_GYR_AM_SET_AWAKE_DUR_MASK = 3,
_BNO055_GYR_AM_SET_AWAKE_DUR_SHIFT = 2
// 0x10-0x80 reserved
} BNO055_GYR_AM_SET_BITS_T;
/**
* BNO055_GYR_AM_SET_SLOPE_SAMPLES values
*/
typedef enum {
BNO055_SLOPE_SAMPLES_8 = 0, // 8 samples
BNO055_SLOPE_SAMPLES_16 = 1,
BNO055_SLOPE_SAMPLES_32 = 2,
BNO055_SLOPE_SAMPLES_64 = 3
} BNO055_SLOPE_SAMPLES_T;
#ifdef __cplusplus
}
#endif

View File

@ -2,69 +2,7 @@
%include "../upm.i"
%include "cpointer.i"
%include "typemaps.i"
%include "arrays_java.i";
%include "../java_buffer.i"
%apply int {mraa::Edge};
%apply float *INOUT { float *x, float *y, float *z };
%apply float *INOUT { float *heading, float *roll, float *pitch };
%typemap(jni) float* "jfloatArray"
%typemap(jstype) float* "float[]"
%typemap(jtype) float* "float[]"
%typemap(javaout) float* {
return $jnicall;
}
%typemap(jni) int* "jintArray"
%typemap(jstype) int* "int[]"
%typemap(jtype) int* "int[]"
%typemap(javaout) int* {
return $jnicall;
}
%typemap(out) float *getAccelerometer {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) float *getMagnetometer {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) float *getGyroscope {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) float *getEulerAngles {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) float *getQuaternions {
$result = JCALL1(NewFloatArray, jenv, 4);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 4, $1);
}
%typemap(out) float *getLinearAcceleration {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) float *getGravityVectors {
$result = JCALL1(NewFloatArray, jenv, 3);
JCALL4(SetFloatArrayRegion, jenv, $result, 0, 3, $1);
}
%typemap(out) int *getCalibrationStatus {
$result = JCALL1(NewIntArray, jenv, 4);
JCALL4(SetIntArrayRegion, jenv, $result, 0, 4, (const int*)$1);
}
%include "../upm_vectortypes.i"
%ignore getCalibrationStatus(int *, int *, int *, int *);
%ignore getAccelerometer(float *, float *, float *);
@ -75,12 +13,12 @@
%ignore getLinearAcceleration(float *, float *, float *);
%ignore getGravityVectors(float *, float *, float *);
%include "bno055_regs.h"
%include "bno055.hpp"
%{
#include "bno055.hpp"
%}
%include "bno055.hpp"
%pragma(java) jniclasscode=%{
static {
try {

View File

@ -1,11 +1,16 @@
%module jsupm_bno055
%include "../upm.i"
%include "cpointer.i"
%include "../upm_vectortypes.i"
/* Send "int *" and "float *" to JavaScript as intp and floatp */
/* Send "int *" and "float *" to JS as intp and floatp, though
* using the vector return (upm_vectortypes.i) functions instead of
* the pointer argument functions is preferable.
*/
%pointer_functions(int, intp);
%pointer_functions(float, floatp);
%include "bno055_regs.h"
%include "bno055.hpp"
%{
#include "bno055.hpp"

View File

@ -3,19 +3,23 @@
%module pyupm_bno055
%include "../upm.i"
%include "cpointer.i"
%include "../upm_vectortypes.i"
%include "stdint.i"
/* Send "int *" and "float *" to python as intp and floatp */
/* Send "int *" and "float *" to python as intp and floatp, though
* using the vector return (upm_vectortypes.i) functions instead of
* the pointer argument functions is preferable.
*/
%pointer_functions(int, intp);
%pointer_functions(float, floatp);
%feature("autodoc", "3");
#ifdef DOXYGEN
%include "bno055_doc.i"
#endif
%include "bno055_regs.h"
%include "bno055.hpp"
%{
#include "bno055.hpp"