/* * Author: Jon Trulson * Copyright (c) 2017 Intel Corporation. * * The MIT License * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "upm_utilities.h" #include "bmg160.h" // macro for converting a uint8_t low/high pair into a float #define INT16_TO_FLOAT(h, l) \ (float)( (int16_t)( (l) | ((h) << 8) ) ) // SPI CS on and off functions static void _csOn(const bmg160_context dev) { assert(dev != NULL); if (dev->gpioCS) mraa_gpio_write(dev->gpioCS, 0); } static void _csOff(const bmg160_context dev) { assert(dev != NULL); if (dev->gpioCS) mraa_gpio_write(dev->gpioCS, 1); } // init bmg160_context bmg160_init(int bus, int addr, int cs) { bmg160_context dev = (bmg160_context)malloc(sizeof(struct _bmg160_context)); if (!dev) return NULL; // zero out context memset((void *)dev, 0, sizeof(struct _bmg160_context)); // make sure MRAA is initialized if (mraa_init() != MRAA_SUCCESS) { printf("%s: mraa_init() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } if (addr < 0) dev->isSPI = true; if (dev->isSPI) { if (!(dev->spi = mraa_spi_init(bus))) { printf("%s: mraa_spi_init() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } // Only create cs context if we are actually using a valid pin. // A hardware controlled pin should specify cs as -1. if (cs >= 0) { if (!(dev->gpioCS = mraa_gpio_init(cs))) { printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } mraa_gpio_dir(dev->gpioCS, MRAA_GPIO_OUT); } mraa_spi_mode(dev->spi, MRAA_SPI_MODE0); if (mraa_spi_frequency(dev->spi, 5000000)) { printf("%s: mraa_spi_frequency() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } } else { // I2C if (!(dev->i2c = mraa_i2c_init(bus))) { printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } if (mraa_i2c_address(dev->i2c, addr)) { printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } } // check the chip id uint8_t chipID = bmg160_get_chip_id(dev); if (chipID != BMG160_CHIPID) { printf("%s: invalid chip id: %02x. Expected %02x\n", __FUNCTION__, chipID, BMG160_CHIPID); bmg160_close(dev); return NULL; } // call devinit with default options if (bmg160_devinit(dev, BMG160_POWER_MODE_NORMAL, BMG160_RANGE_250, BMG160_BW_400_47)) { printf("%s: bmg160_devinit() failed.\n", __FUNCTION__); bmg160_close(dev); return NULL; } return dev; } void bmg160_close(bmg160_context dev) { assert(dev != NULL); bmg160_uninstall_isr(dev, BMG160_INTERRUPT_INT1); bmg160_uninstall_isr(dev, BMG160_INTERRUPT_INT2); if (dev->i2c) mraa_i2c_stop(dev->i2c); if (dev->spi) mraa_spi_stop(dev->spi); if (dev->gpioCS) mraa_gpio_close(dev->gpioCS); free(dev); } upm_result_t bmg160_devinit(const bmg160_context dev, BMG160_POWER_MODE_T pwr, BMG160_RANGE_T range, BMG160_BW_T bw) { assert(dev != NULL); if (bmg160_set_power_mode(dev, pwr)) { printf("%s: bmg160_set_power_mode() failed.\n", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } upm_delay_ms(50); // 50ms, in case we are waking up // set our range and bandwidth, make sure register shadowing is // enabled, enable output filtering, and set our FIFO config if (bmg160_set_range(dev, range) || bmg160_set_bandwidth(dev, bw) || bmg160_enable_register_shadowing(dev, true) || bmg160_enable_output_filtering(dev, true) || bmg160_fifo_config(dev, BMG160_FIFO_MODE_BYPASS, BMG160_FIFO_DATA_SEL_XYZ)) { printf("%s: failed to set configuration parameters.\n", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } bmg160_enable_fifo(dev, true); // settle upm_delay_ms(50); return UPM_SUCCESS; } upm_result_t bmg160_update(const bmg160_context dev) { assert(dev != NULL); int bufLen = 7; // max, non-FIFO uint8_t startReg = BMG160_REG_RATE_X_LSB; if (dev->useFIFO) { bufLen = 6; startReg = BMG160_REG_FIFO_DATA; } uint8_t buf[bufLen]; if (bmg160_read_regs(dev, startReg, buf, bufLen) != bufLen) { printf("%s: bmg160_read_regs() failed to read %d bytes\n", __FUNCTION__, bufLen); return UPM_ERROR_OPERATION_FAILED; } // x msb lsb dev->gyrX = INT16_TO_FLOAT(buf[1], buf[0]); // y dev->gyrY = INT16_TO_FLOAT(buf[3], buf[2]); // z dev->gyrZ = INT16_TO_FLOAT(buf[5], buf[4]); // get the temperature... int8_t temp = 0; if (dev->useFIFO) { // we have to read temperature separately... temp = (int8_t)bmg160_read_reg(dev, BMG160_REG_TEMP); } else { // we already got it temp = (int8_t)buf[6]; } // .5K/LSB, 23C center point dev->temperature = ((float)temp / 2.0) + 23.0; return UPM_SUCCESS; } void bmg160_enable_fifo(const bmg160_context dev, bool useFIFO) { assert(dev != NULL); dev->useFIFO = useFIFO; } uint8_t bmg160_read_reg(const bmg160_context dev, uint8_t reg) { assert(dev != NULL); if (dev->isSPI) { reg |= 0x80; // needed for read uint8_t pkt[2] = {reg, 0}; _csOn(dev); if (mraa_spi_transfer_buf(dev->spi, pkt, pkt, 2)) { _csOff(dev); printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__); return 0xff; } _csOff(dev); return pkt[1]; } else return (uint8_t)mraa_i2c_read_byte_data(dev->i2c, reg); } int bmg160_read_regs(const bmg160_context dev, uint8_t reg, uint8_t *buffer, int len) { assert(dev != NULL); if (dev->isSPI) { reg |= 0x80; // needed for read uint8_t sbuf[len + 1]; memset((char *)sbuf, 0, len + 1); sbuf[0] = reg; // We need to do it this way for edison - ie: use a single // transfer rather than breaking it up into two like we used to. // This means a buffer copy is now required, but that's the way // it goes. _csOn(dev); if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1)) { _csOff(dev); printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__); return -1; } _csOff(dev); // now copy it into user buffer for (int i=0; ii2c, reg, buffer, len) != len) return -1; } return len; } upm_result_t bmg160_write_reg(const bmg160_context dev, uint8_t reg, uint8_t val) { assert(dev != NULL); if (dev->isSPI) { reg &= 0x7f; // mask off 0x80 for writing uint8_t pkt[2] = {reg, val}; _csOn(dev); if (mraa_spi_transfer_buf(dev->spi, pkt, NULL, 2)) { _csOff(dev); printf("%s: mraa_spi_transfer_buf() failed.", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } _csOff(dev); } else { if (mraa_i2c_write_byte_data(dev->i2c, val, reg)) { printf("%s: mraa_i2c_write_byte_data() failed.", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } } return UPM_SUCCESS; } uint8_t bmg160_get_chip_id(const bmg160_context dev) { assert(dev != NULL); return bmg160_read_reg(dev, BMG160_REG_CHIP_ID); } void bmg160_get_gyroscope(const bmg160_context dev, float *x, float *y, float *z) { assert(dev != NULL); if (x) *x = (dev->gyrX * dev->gyrScale) / 1000.0; if (y) *y = (dev->gyrY * dev->gyrScale) / 1000.0; if (z) *z = (dev->gyrZ * dev->gyrScale) / 1000.0; } float bmg160_get_temperature(const bmg160_context dev) { assert(dev != NULL); return dev->temperature; } upm_result_t bmg160_reset(const bmg160_context dev) { assert(dev != NULL); if (bmg160_write_reg(dev, BMG160_REG_SOFTRESET, BMG160_RESET_BYTE)) return UPM_ERROR_OPERATION_FAILED; upm_delay(1); return UPM_SUCCESS; } upm_result_t bmg160_set_range(const bmg160_context dev, BMG160_RANGE_T range) { assert(dev != NULL); // we also have to write a fixed '0x10' to the high-order bits for // some reason (according to datasheet) uint8_t reg = range | (_BMG160_GYR_RANGE_FIXED_VALUE << _BMG160_GYR_RANGE_FIXED_SHIFT); if (bmg160_write_reg(dev, BMG160_REG_GYR_RANGE, reg)) return UPM_ERROR_OPERATION_FAILED; switch(range) { case BMG160_RANGE_125: dev->gyrScale = 3.8; // milli-degrees break; case BMG160_RANGE_250: dev->gyrScale = 7.6; break; case BMG160_RANGE_500: dev->gyrScale = 15.3; break; case BMG160_RANGE_1000: dev->gyrScale = 30.5; break; case BMG160_RANGE_2000: dev->gyrScale = 61.0; break; } return UPM_SUCCESS; } upm_result_t bmg160_set_bandwidth(const bmg160_context dev, BMG160_BW_T bw) { assert(dev != NULL); if (bmg160_write_reg(dev, BMG160_REG_GYR_BW, bw)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_set_power_mode(const bmg160_context dev, BMG160_POWER_MODE_T power) { assert(dev != NULL); // mask off reserved bits first uint8_t reg = bmg160_read_reg(dev, BMG160_REG_LPM1) & ~_BMG160_LPM1_RESERVED_BITS; reg &= ~(_BMG160_LPM1_POWER_MODE_MASK << _BMG160_LPM1_POWER_MODE_SHIFT); reg |= (power << _BMG160_LPM1_POWER_MODE_SHIFT); if (bmg160_write_reg(dev, BMG160_REG_LPM1, power)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_fifo_set_watermark(const bmg160_context dev, int wm) { assert(dev != NULL); // mask off illegal values uint8_t reg = ((uint8_t)wm) & _BMG160_FIFO_CONFIG_0_WATER_MARK_MASK; if (bmg160_write_reg(dev, BMG160_REG_FIFO_CONFIG_0, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_fifo_config(const bmg160_context dev, BMG160_FIFO_MODE_T mode, BMG160_FIFO_DATA_SEL_T axes) { assert(dev != NULL); uint8_t reg = ( (mode << _BMG160_FIFO_CONFIG_1_FIFO_MODE_SHIFT) | (axes << _BMG160_FIFO_CONFIG_1_FIFO_DATA_SHIFT) ); if (bmg160_write_reg(dev, BMG160_REG_FIFO_CONFIG_1, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } uint8_t bmg160_get_interrupt_enable0(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_EN_0) & ~_BMG160_INT_EN_0_RESERVED_BITS); } upm_result_t bmg160_set_interrupt_enable0(const bmg160_context dev, uint8_t bits) { assert(dev != NULL); uint8_t reg = bits & ~_BMG160_INT_EN_0_RESERVED_BITS; if (bmg160_write_reg(dev, BMG160_REG_INT_EN_0, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } uint8_t bmg160_get_interrupt_map0(const bmg160_context dev) { assert(dev != NULL); return bmg160_read_reg(dev, BMG160_REG_INT_MAP_0) & ~_BMG160_INT_MAP_0_RESERVED_BITS; } upm_result_t bmg160_set_interrupt_map0(const bmg160_context dev, uint8_t bits) { assert(dev != NULL); uint8_t reg = bits & ~_BMG160_INT_MAP_0_RESERVED_BITS; if (bmg160_write_reg(dev, BMG160_REG_INT_MAP_0, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } uint8_t bmg160_get_interrupt_map1(const bmg160_context dev) { assert(dev != NULL); return bmg160_read_reg(dev, BMG160_REG_INT_MAP_1); } upm_result_t bmg160_set_interrupt_map1(const bmg160_context dev, uint8_t bits) { assert(dev != NULL); if (bmg160_write_reg(dev, BMG160_REG_INT_MAP_1, bits)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } // REG_INT_EN1, for some strange reason uint8_t bmg160_get_interrupt_src(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_EN_1) & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS); } upm_result_t bmg160_set_interrupt_src(const bmg160_context dev, uint8_t bits) { assert(dev != NULL); uint8_t reg = bits & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS; if (bmg160_write_reg(dev, BMG160_REG_INT_EN_1, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } uint8_t bmg160_get_interrupt_output_control(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_EN_1) & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS); } upm_result_t bmg160_set_interrupt_output_control(const bmg160_context dev, uint8_t bits) { assert(dev != NULL); uint8_t reg = bits & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS; if (bmg160_write_reg(dev, BMG160_REG_INT_EN_1, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_clear_interrupt_latches(const bmg160_context dev) { assert(dev != NULL); uint8_t reg = bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH) & ~_BMG160_INT_RST_LATCH_RESERVED_BITS; reg |= BMG160_INT_RST_LATCH_RESET_INT; if (bmg160_write_reg(dev, BMG160_REG_INT_RST_LATCH, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } BMG160_RST_LATCH_T bmg160_get_interrupt_latch_behavior(const bmg160_context dev) { assert(dev != NULL); uint8_t reg = bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH) & ~_BMG160_INT_RST_LATCH_RESERVED_BITS; reg &= (_BMG160_INT_RST_LATCH_MASK << _BMG160_INT_RST_LATCH_SHIFT); return (BMG160_RST_LATCH_T)reg; } upm_result_t bmg160_set_interrupt_latch_behavior(const bmg160_context dev, BMG160_RST_LATCH_T latch) { assert(dev != NULL); uint8_t reg = bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH) & ~_BMG160_INT_RST_LATCH_RESERVED_BITS; reg &= ~(_BMG160_INT_RST_LATCH_MASK << _BMG160_INT_RST_LATCH_SHIFT); reg |= (latch << _BMG160_INT_RST_LATCH_SHIFT); if (bmg160_write_reg(dev, BMG160_REG_INT_RST_LATCH, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_enable_register_shadowing(const bmg160_context dev, bool shadow) { assert(dev != NULL); uint8_t reg = bmg160_read_reg(dev, BMG160_REG_RATE_HBW) & ~_BMG160_RATE_HBW_RESERVED_BITS; if (shadow) reg &= ~BMG160_RATE_HBW_SHADOW_DIS; else reg |= BMG160_RATE_HBW_SHADOW_DIS; if (bmg160_write_reg(dev, BMG160_REG_RATE_HBW, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } upm_result_t bmg160_enable_output_filtering(const bmg160_context dev, bool filter) { assert(dev != NULL); uint8_t reg = bmg160_read_reg(dev, BMG160_REG_RATE_HBW) & ~_BMG160_RATE_HBW_RESERVED_BITS; if (filter) reg &= ~BMG160_RATE_HBW_DATA_HIGH_BW; else reg |= BMG160_RATE_HBW_DATA_HIGH_BW; if (bmg160_write_reg(dev, BMG160_REG_RATE_HBW, reg)) return UPM_ERROR_OPERATION_FAILED; return UPM_SUCCESS; } uint8_t bmg160_get_interrupt_status0(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_0) & ~_BMG160_INT_STATUS_0_RESERVED_BITS); } uint8_t bmg160_get_interrupt_status1(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_1) & ~_BMG160_INT_STATUS_1_RESERVED_BITS); } uint8_t bmg160_get_interrupt_status2(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_2) & ~_BMG160_INT_STATUS_2_RESERVED_BITS); } uint8_t bmg160_get_interrupt_status3(const bmg160_context dev) { assert(dev != NULL); return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_3) & ~_BMG160_INT_STATUS_3_RESERVED_BITS); } upm_result_t bmg160_install_isr(const bmg160_context dev, BMG160_INTERRUPT_PINS_T intr, int gpio, mraa_gpio_edge_t level, void (*isr)(void *), void *arg) { assert(dev != NULL); // delete any existing ISR and GPIO context for this interrupt bmg160_uninstall_isr(dev, intr); mraa_gpio_context gpio_isr = NULL; // create gpio context if (!(gpio_isr = mraa_gpio_init(gpio))) { printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } mraa_gpio_dir(gpio_isr, MRAA_GPIO_IN); if (mraa_gpio_isr(gpio_isr, level, isr, arg)) { mraa_gpio_close(gpio_isr); printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__); return UPM_ERROR_OPERATION_FAILED; } switch (intr) { case BMG160_INTERRUPT_INT1: dev->gpio1 = gpio_isr; break; case BMG160_INTERRUPT_INT2: dev->gpio2 = gpio_isr; break; } return UPM_SUCCESS; } void bmg160_uninstall_isr(const bmg160_context dev, BMG160_INTERRUPT_PINS_T intr) { assert(dev != NULL); switch (intr) { case BMG160_INTERRUPT_INT1: if (dev->gpio1) { mraa_gpio_isr_exit(dev->gpio1); mraa_gpio_close(dev->gpio1); dev->gpio1 = NULL; } break; case BMG160_INTERRUPT_INT2: if (dev->gpio2) { mraa_gpio_isr_exit(dev->gpio2); mraa_gpio_close(dev->gpio2); dev->gpio2 = NULL; } break; } }