/* * Author: Norbert Wesp * Copyright (c) 2017 Phytec Messtechnik GmbH. * * based on: RIOT-driver tmp006 by Johann Fischer * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include "tmp006.hpp" using namespace upm; TMP006::TMP006(int bus, uint8_t conv_rate, int devAddr) : m_i2ControlCtx(bus) { uint8_t reg[2]; uint16_t tmp; m_temperature = 0; m_name = TMP006_NAME;; m_controlAddr = devAddr; m_bus = bus; if (conv_rate > TMP006_CONFIG_CR_AS16) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_conv_rate() failed"); } mraa::Result ret = m_i2ControlCtx.address(m_controlAddr); if (ret != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_address() failed"); } if (checkID() != 0) { /* sensor_id does not match! maybe wrong sensor chosen? */ throw std::invalid_argument(std::string(__FUNCTION__) + ": checkID() failed"); } tmp = m_i2ControlCtx.readWordReg(TMP006_CONFIGURATION); reg[0] = (tmp >> 8); tmp = TMP006_CONFIG_CR(conv_rate); reg[1] = (tmp >> 8); tmp = ((uint16_t)reg[1] << 8) | reg[0]; ret = m_i2ControlCtx.writeWordReg(TMP006_CONFIGURATION, tmp); if (ret != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write_word_data() failed"); } } int TMP006::checkID(void) { uint8_t tmp[2]; uint16_t id; int re = 0; re = m_i2ControlCtx.readBytesReg(TMP006_DEVICE_ID_REG, tmp, 2); if (re != 2) { /* not enough bytes were read! */ return -1; } id = ((uint16_t)tmp[0] << 8) | tmp[1]; if (id != TMP006_DEVICE_ID) { return -1; } return 0; } void TMP006::resetSensor(void) { uint8_t reg[2]; uint16_t tmp = TMP006_RST_SOFT; reg[0] = (tmp >> 8); reg[1] = (tmp & 0x00ff); tmp = ((uint16_t)reg[1] << 8) | reg[0]; mraa::Result ret = m_i2ControlCtx.writeWordReg(TMP006_CONFIGURATION, tmp); if (ret != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write_word_data() failed"); } } void TMP006::setActive(void) { uint8_t reg[2]; uint16_t tmp; tmp = m_i2ControlCtx.readWordReg(TMP006_CONFIGURATION); reg[0] = (tmp >> 8); reg[1] = (tmp & 0x00ff); reg[1] |= (TMP006_CONFIG_MOD(TMP006_CONFIG_MOD_CC) >> 8); tmp = ((uint16_t)reg[0] << 8) | reg[1]; mraa::Result ret = m_i2ControlCtx.writeWordReg(TMP006_CONFIGURATION, tmp); if (ret != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write_word_data() failed"); } } void TMP006::setStandby(void) { uint8_t reg[2]; uint16_t tmp; tmp = m_i2ControlCtx.readWordReg(TMP006_CONFIGURATION); reg[0] = (tmp >> 8); reg[1] = (tmp & 0x00ff); reg[1] &= ~(TMP006_CONFIG_MOD(TMP006_CONFIG_MOD_CC) >> 8); tmp = ((uint16_t)reg[0] << 8) | reg[1]; mraa::Result ret = m_i2ControlCtx.writeWordReg(TMP006_CONFIGURATION, tmp); if (ret != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write_word_data() failed"); } } int TMP006::sampleData(void) { uint8_t buf[2]; uint16_t rawVolt; uint16_t rawTemp; float tamb[1]; float tobj[1]; uint16_t tmp; uint8_t drdy[1]; tmp = m_i2ControlCtx.readWordReg(TMP006_CONFIGURATION); buf[0] = (tmp >> 8); buf[1] = (tmp & 0x00ff); *drdy = buf[0] & (TMP006_DRDY_DATA_RDY); if(! (*drdy)) { /* conversation in progress */ return -1; } tmp = m_i2ControlCtx.readWordReg(TMP006_SENSOR_VOLTAGE); buf[0] = (tmp >> 8); buf[1] = (tmp & 0x00ff); rawVolt = ((uint16_t)buf[1] << 8) | buf[0]; tmp = m_i2ControlCtx.readWordReg(TMP006_LOCAL_TEMPERATURE); buf[0] = (tmp >> 8); buf[1] = (tmp & 0x00ff); rawTemp = ((uint16_t)buf[1] << 8) | buf[0]; convert_data(rawVolt, rawTemp, tamb, tobj); m_temperature = (uint16_t)*tobj; return 0; } void TMP006::convert_data(int16_t rawv,int16_t rawt, float *tamb, float *tobj) { /* calculate die temperature */ *tamb = (double)rawt / 128.0; /* die temperature in Kelvin */ double tdie_k = *tamb + 273.15; /* calculate sensor voltage */ double sens_v = (double)rawv * TMP006_CCONST_LSB_SIZE; double tdiff = tdie_k - TMP006_CCONST_TREF; double tdiff_pow2 = pow(tdiff, 2); double s = TMP006_CCONST_S0 * (1 + TMP006_CCONST_A1 * tdiff + TMP006_CCONST_A2 * tdiff_pow2); double v_os = TMP006_CCONST_B0 + TMP006_CCONST_B1 * tdiff + TMP006_CCONST_B2 * tdiff_pow2; double f_obj = (sens_v-v_os) + TMP006_CCONST_C2 * pow((sens_v-v_os), 2); double t = pow(pow(tdie_k, 4) + (f_obj / s), 0.25); /* calculate object temperature in Celsius */ *tobj = (t - 273.15); } float TMP006::getTemperature(int bSampleData) { if (bSampleData) { if( (sampleData()) == -1) { /* conversation in progress */ return (-273.2); } } return (float) m_temperature; } uint16_t TMP006::getConfig(void) { uint8_t buf[2]; uint16_t tmp; tmp = m_i2ControlCtx.readWordReg(TMP006_CONFIGURATION); buf[0] = (tmp >> 8); buf[1] = (tmp & 0x00ff); return ((uint16_t)buf[1] << 8) | buf[0]; }