upm/examples/java/H803X_Example.java
Jon Trulson 5a5637a431 h803x: Initial implementation
This module implements support for the Veris H8035 and H8036 Energy
Meters.

The H8036 is similar to the H8035, but provides much more data.

The Enercept H8035/H8036 is an innovative three-phase networked
(Modbus RTU) power transducer that combines electronics and high
accuracy industrial grade CTs in a single package. The need for
external electrical enclosures is eliminated, greatly reducing
installation time and cost. Color-coordination between voltage leads
and CTs makes phase matching easy. Additionally, these transducers
automatically detect and compensate for phase reversal, eliminating
the concern of CT load orientation. Up to 63 Transducers can be
daisy-chained on a single RS-485 network.

This module was developed using libmodbus 3.1.2, and the H8035.  The
H8036 has not been tested.  libmodbus 3.1.2 must be present for this
module to build.

Signed-off-by: Jon Trulson <jtrulson@ics.com>
Signed-off-by: Abhishek Malik <abhishek.malik@intel.com>
2016-03-22 22:58:17 -07:00

124 lines
5.9 KiB
Java

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
import upm_h803x.H803X;
public class H803X_Example
{
private static String defaultDev = "/dev/ttyUSB0";
public static void main(String[] args) throws InterruptedException
{
// ! [Interesting]
if (args.length > 0)
defaultDev = args[0];
System.out.println("Using device " + defaultDev);
System.out.println("Initializing...");
// Instantiate an H803X instance, using MODBUS slave address 1, and
// default comm parameters (9600, 8, N, 2)
H803X sensor = new H803X(defaultDev, 1);
// output the Slave ID (manufacturer, model, serno)
System.out.println("Slave ID: " + sensor.getSlaveID());
System.out.println();
while (true)
{
// update our values from the sensor
sensor.update();
// H8035 / H8036
System.out.println("Consumption (kWh): "
+ sensor.getConsumption());
System.out.println("Real Power (kW): "
+ sensor.getRealPower());
if (sensor.isH8036())
{
// The H8036 has much more data available...
System.out.println("Reactive Power (kVAR): "
+ sensor.getReactivePower());
System.out.println("Apparent Power (kVA): "
+ sensor.getApparentPower());
System.out.println("Power Factor: "
+ sensor.getPowerFactor());
System.out.println("Volts Line to Line: "
+ sensor.getVoltsLineToLine());
System.out.println("Volts Line to Neutral: "
+ sensor.getVoltsLineToNeutral());
System.out.println("Current: " + sensor.getCurrent());
System.out.println("Real Power Phase A (kW): "
+ sensor.getRealPowerPhaseA());
System.out.println("Real Power Phase B (kW): "
+ sensor.getRealPowerPhaseB());
System.out.println("Real Power Phase C (kW): "
+ sensor.getRealPowerPhaseC());
System.out.println("Power Factor Phase A: "
+ sensor.getPowerFactorPhaseA());
System.out.println("Power Factor Phase B: "
+ sensor.getPowerFactorPhaseB());
System.out.println("Power Factor Phase C: "
+ sensor.getPowerFactorPhaseC());
System.out.println("Volts Phase A to B: "
+ sensor.getVoltsPhaseAToB());
System.out.println("Volts Phase B to C: "
+ sensor.getVoltsPhaseBToC());
System.out.println("Volts Phase A to C: "
+ sensor.getVoltsPhaseAToC());
System.out.println("Volts Phase A to Neutral: "
+ sensor.getVoltsPhaseAToNeutral());
System.out.println("Volts Phase B to Neutral: "
+ sensor.getVoltsPhaseBToNeutral());
System.out.println("Volts Phase C to Neutral: "
+ sensor.getVoltsPhaseCToNeutral());
System.out.println("Current Phase A: "
+ sensor.getCurrentPhaseA());
System.out.println("Current Phase B: "
+ sensor.getCurrentPhaseB());
System.out.println("Current Phase C: "
+ sensor.getCurrentPhaseC());
System.out.println("Avg Real Power (kW): "
+ sensor.getAvgRealPower());
System.out.println("Min Real Power (kW): "
+ sensor.getMinRealPower());
System.out.println("Max Real Power (kW): "
+ sensor.getMaxRealPower());
}
System.out.println();
Thread.sleep(2000);
}
// ! [Interesting]
}
}