upm/examples/python/bno055.py
Jon Trulson d4b536b593 bno055: C port; C++ wraps C
The API has been changed in some cases - see the apichanges.md
document.

In addition, this driver uses a new upm_vectortypes.i SWIG interface
file to provide a mechanism for methods that return a vector of floats
and ints instead of a pointer to an array.

This works much nicer than C array pointers, and results in Python/JS/Java
code that looks much more "natural" to the language in use.

The Python, JS, and Java examples have been changed to use these
methods.  Support for the "old" C-style pointer methods are still
provided for backward compatibility with existing code.

As an example - to retrieve the x, y, and z data for Euler Angles from
the bno055, the original python code would look something like:

       ...
       x = sensorObj.new_floatp()
       y = sensorObj.new_floatp()
       z = sensorObj.new_floatp()
       ...
       sensor.getEulerAngles(x, y, z)
       ...
       print("Euler: Heading:", sensorObj.floatp_value(x), end=' ')
       print(" Roll:", sensorObj.floatp_value(y), end=' ')
       ...

Now the equivalent code is simply:

       floatData = sensor.getEulerAngles()
       print("Euler: Heading:", floatData[0], ...
       print(" Roll:", floatData[1], end=' ')
       ...

Additionally, interrupt handling for Java is now implemented
completely in the C++ header file now rather than the .cxx file, so no
special SWIG processing is required anymore. See Issue #518 .

Signed-off-by: Jon Trulson <jtrulson@ics.com>
2017-03-07 13:16:24 -07:00

114 lines
3.9 KiB
Python
Executable File

#!/usr/bin/python
# Author: Jon Trulson <jtrulson@ics.com>
# Copyright (c) 2016-2017 Intel Corporation.
#
# The MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import print_function
import time, sys, signal, atexit
from upm import pyupm_bno055 as sensorObj
def main():
# Instantiate an BNO055 using default parameters (bus 0, addr
# 0x28). The default running mode is NDOF absolute orientation
# mode.
sensor = sensorObj.BNO055()
## Exit handlers ##
# This function stops python from printing a stacktrace when you
# hit control-C
def SIGINTHandler(signum, frame):
raise SystemExit
# This function lets you run code on exit
def exitHandler():
print("Exiting...")
sys.exit(0)
# Register exit handlers
atexit.register(exitHandler)
signal.signal(signal.SIGINT, SIGINTHandler)
print("First we need to calibrate. 4 numbers will be output every")
print("second for each sensor. 0 means uncalibrated, and 3 means")
print("fully calibrated.")
print("See the UPM documentation on this sensor for instructions on")
print("what actions are required to calibrate.")
print()
while (not sensor.isFullyCalibrated()):
intData = sensor.getCalibrationStatus()
print("Magnetometer:", intData[0], end=' ')
print(" Accelerometer:", intData[1], end=' ')
print(" Gyroscope:", intData[2], end=' ')
print(" System:", intData[3])
time.sleep(1)
print()
print("Calibration complete.")
print()
# example - read calibration data, sleep and then write it
# print("Reading calibration data....")
# byteData = sensor.readCalibrationData()
# print("Read data successfully.")
# print("Writing calibration data...")
# time.sleep(1)
# sensor.writeCalibrationData(byteData)
# print("Success!")
# time.sleep(3)
# now output various fusion data every 250 milliseconds
while (True):
sensor.update()
floatData = sensor.getEulerAngles()
print("Euler: Heading:", floatData[0], end=' ')
print(" Roll:", floatData[1], end=' ')
print(" Pitch:", floatData[2], end=' ')
print(" degrees")
floatData = sensor.getQuaternions()
print("Quaternion: W:", floatData[0], end=' ')
print(" X:", floatData[1], end=' ')
print(" Y:", floatData[2], end=' ')
print(" Z:", floatData[3])
floatData = sensor.getLinearAcceleration()
print("Linear Acceleration: X:", floatData[0], end=' ')
print(" Y:", floatData[1], end=' ')
print(" Z:", floatData[2], end=' ')
print(" m/s^2")
floatData = sensor.getGravityVectors()
print("Gravity Vector: X:", floatData[0], end=' ')
print(" Y:", floatData[1], end=' ')
print(" Z:", floatData[2], end=' ')
print(" m/s^2")
print()
time.sleep(.25);
if __name__ == '__main__':
main()