upm/src/t8100/t8100.cxx
Jon Trulson baec9966f0 spelling: correct many misspellings of celsius
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2016-07-12 17:42:01 -06:00

255 lines
5.6 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include "t8100.hpp"
using namespace upm;
using namespace std;
// conversion from fahrenheit to celsius and back
static float f2c(float f)
{
return ((f - 32.0) / (9.0 / 5.0));
}
static float c2f(float c)
{
return (c * (9.0 / 5.0) + 32.0);
}
T8100::T8100(uint32_t targetDeviceObjectID) :
BACNETUTIL(targetDeviceObjectID)
{
setDebug(false);
// we disable this by default for performance reasons
checkReliability(false);
m_isTempInitialized = false;
m_isCelsius = false;
m_humidity = 0.0;
m_temperature = 0.0;
m_co2 = 0.0;
m_relayState = false;
}
T8100::~T8100()
{
}
void T8100::update()
{
if (!m_isTempInitialized)
{
// this will update internals so conversions work properly
getTemperatureScale();
}
float tmpF = getAnalogInput(AI_Temperature_Thermistor);
if (m_isCelsius)
m_temperature = tmpF;
else
m_temperature = f2c(tmpF);
m_humidity = getAnalogInput(AI_Relative_Humidity);
m_co2 = getAnalogInput(AI_CO2);
m_relayState = getBinaryInput(BI_Relay_State);
}
float T8100::getTemperature(bool fahrenheit)
{
if (fahrenheit)
return c2f(m_temperature);
else
return m_temperature;
}
void T8100::setTemperatureScale(bool fahrenheit)
{
setBinaryValue(BV_Temperature_Units, fahrenheit);
m_isTempInitialized = true;
m_isCelsius = (fahrenheit) ? false : true;
}
bool T8100::getTemperatureScale()
{
bool scale = getBinaryValue(BV_Temperature_Units);
m_isTempInitialized = true;
m_isCelsius = !scale;
return scale;
}
float T8100::getTemperatureOffset()
{
return getAnalogValue(AV_Temperature_Offset);
}
void T8100::setTemperatureOffset(float value)
{
// Always in C...
if (value < -50.0 || value > 50.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between -50 and 50,"
+ " in degrees Celsius");
}
setAnalogValue(AV_Temperature_Offset, value);
}
float T8100::getHumidityOffset()
{
return getAnalogValue(AV_RH_Offset);
}
void T8100::setHumidityOffset(float value)
{
if (value < -100.0 || value > 100.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between -100 and 100");
}
setAnalogValue(AV_RH_Offset, value);
}
float T8100::getRelaySetPoint()
{
return getAnalogValue(AV_Relay_Set_Point);
}
void T8100::setRelaySetPoint(float value)
{
if (value < 0.00 || value > 65535.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between 0 and 65535");
}
setAnalogValue(AV_Relay_Set_Point, value);
}
float T8100::getRelayHysteresis()
{
return getAnalogValue(AV_Relay_Hysteresis);
}
void T8100::setRelayHysteresis(float value)
{
if (value < 0.00 || value > 65535.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between 0 and 65535");
}
setAnalogValue(AV_Relay_Hysteresis, value);
}
float T8100::getElevation()
{
return getAnalogValue(AV_Elevation);
}
void T8100::setElevation(float value)
{
if (value < 0.00 || value > 65535.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between 0 and 65535");
}
setAnalogValue(AV_Elevation, value);
}
float T8100::getCalibrationSinglePoint()
{
return getAnalogValue(AV_Calibration_Single_Point);
}
void T8100::setCalibrationSinglePoint(float value)
{
if (value < 0.00 || value > 65535.0)
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": value must be between 0 and 65535");
}
setAnalogValue(AV_Calibration_Single_Point, value);
}
float T8100::getBaudRate()
{
return getAnalogValue(AV_Baud_Rate);
}
float T8100::getMACAddress()
{
return getAnalogValue(AV_MAC_Address);
}
bool T8100::getABCLogicState()
{
return getBinaryValue(BV_ABC_Logic_State);
}
void T8100::setABCLogicState(bool value)
{
setBinaryValue(BV_ABC_Logic_State, value);
}
bool T8100::getABCLogicReset()
{
return getBinaryValue(BV_ABC_Logic_Reset);
}
void T8100::setABCLogicReset(bool value)
{
setBinaryValue(BV_ABC_Logic_Reset, value);
}
bool T8100::getCO2Calibration()
{
return getBinaryValue(BV_CO2_Calibration);
}
void T8100::setCO2Calibration(bool value)
{
setBinaryValue(BV_CO2_Calibration, value);
}