upm/src/tsl2561/tsl2561.c
Noel Eck 21ecbd90eb ANDROID: Treat utilities as its own library
Since src/utilities now builds a C/C++ library, other targets which were
using symbols from utilities now need to include the correct target
dependency.  This is mainly for upm_delay* functions.  Added utilities-c
target to all sensor library CMakeLists.txt which require it.

Moved macro for __FILENAME__ from upm_utilities.h to upm_fti.h since
ONLY the FTI headers used this.

Signed-off-by: Noel Eck <noel.eck@intel.com>
2017-04-24 10:27:44 -07:00

256 lines
7.2 KiB
C

/*
* Author: Nandkishor Sonar <Nandkishor.Sonar@intel.com>,
* Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2014 Intel Corporation.
*
* LIGHT-TO-DIGITAL CONVERTER [TAOS-TSL2561]
* Inspiration and lux calculation formulas from data sheet
* URL: http://www.adafruit.com/datasheets/TSL2561.pdf
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "tsl2561.h"
#include "upm_utilities.h"
// forward declaration
upm_result_t tsl2561_compute_lux(const tsl2561_context dev, int *int_data);
tsl2561_context tsl2561_init(int bus, uint8_t dev_address, uint8_t gain,
uint8_t integration_time){
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
return NULL;
}
tsl2561_context dev =
(tsl2561_context)malloc(sizeof(struct _tsl2561_context));
if (!dev)
return NULL;
dev->bus = bus;
dev->address = dev_address;
dev->gain = gain;
dev->integration_time = integration_time;
dev->i2c = mraa_i2c_init(dev->bus);
if(dev->i2c == NULL){
free(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, dev->address) != MRAA_SUCCESS)
{
mraa_i2c_stop(dev->i2c);
free(dev);
return NULL;
}
// POWER UP.
if(mraa_i2c_write_byte_data(dev->i2c, CONTROL_POWERON, REGISTER_Control) != MRAA_SUCCESS){
mraa_i2c_stop(dev->i2c);
free(dev);
return NULL;
}
// Power on Settling time
upm_delay_us(1000);
// Gain & Integration time.
if(mraa_i2c_write_byte_data(dev->i2c, (dev->gain | dev->integration_time), REGISTER_Timing) != MRAA_SUCCESS){
mraa_i2c_stop(dev->i2c);
free(dev);
return NULL;
}
// Set interrupt threshold to default.
if(mraa_i2c_write_byte_data(dev->i2c, 0x00, REGISTER_Interrupt) != MRAA_SUCCESS){
mraa_i2c_stop(dev->i2c);
free(dev);
return NULL;
}
return dev;
}
void tsl2561_close(tsl2561_context dev){
if (mraa_i2c_write_byte_data(dev->i2c, CONTROL_POWEROFF,
REGISTER_Control) != MRAA_SUCCESS){
printf("Unable turn off device\n");
}
mraa_i2c_stop(dev->i2c);
free(dev);
}
upm_result_t tsl2561_get_lux(const tsl2561_context dev, float* lux){
int lux_val=0;
tsl2561_compute_lux(dev, &lux_val);
*lux = (float) lux_val;
return UPM_SUCCESS;
}
upm_result_t tsl2561_i2c_write_reg(tsl2561_context dev, uint8_t reg,
uint8_t value){
// Start transmission to device
if(mraa_i2c_address(dev->i2c, dev->address) != MRAA_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
// Write register to I2C
if(mraa_i2c_write_byte(dev->i2c, reg) != MRAA_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
// Write value to I2C
if(mraa_i2c_write_byte(dev->i2c, value) != MRAA_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(100);
return UPM_SUCCESS;
}
upm_result_t tsl2561_i2c_read_reg(tsl2561_context dev, uint8_t reg,
uint8_t* data){
// Start transmission to dev
if(mraa_i2c_address(dev->i2c, dev->address) != MRAA_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
// Send address of register to be read.
if(mraa_i2c_write_byte(dev->i2c, reg) != MRAA_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
// Read byte.
*data = mraa_i2c_read_byte(dev->i2c);
//upm_delay(1);
return UPM_SUCCESS;
}
upm_result_t tsl2561_compute_lux(const tsl2561_context dev, int *int_data) {
int lux;
uint16_t raw_lux_ch_0;
uint16_t raw_lux_ch_1;
uint8_t ch0_low, ch0_high, ch1_low, ch1_high;
if (tsl2561_i2c_read_reg(dev, REGISTER_Channal0L, &ch0_low) != UPM_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
if(tsl2561_i2c_read_reg(dev, REGISTER_Channal0H, &ch0_high) != UPM_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
raw_lux_ch_0 = ch0_high*256 + ch0_low;
if(tsl2561_i2c_read_reg(dev, REGISTER_Channal1L, &ch1_low) != UPM_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
if(tsl2561_i2c_read_reg(dev, REGISTER_Channal1H, &ch1_high) != UPM_SUCCESS){
return UPM_ERROR_OPERATION_FAILED;
}
raw_lux_ch_1 = ch1_high*256 + ch1_low;
uint64_t scale = 0;
switch(dev->integration_time){
case 0: // 13.7 msec
scale = LUX_CHSCALE_TINT0;
break;
case 1: // 101 msec
scale = LUX_CHSCALE_TINT1;
break;
case 2: // assume no scaling
scale = (1 << LUX_CHSCALE);
break;
}
// scale if gain is NOT 16X
if(!dev->gain)
scale = scale << 4;
uint64_t channel1 = 0;
uint64_t channel0 = 0;
// scale the channel values
channel0 = (raw_lux_ch_0 * scale) >> LUX_CHSCALE;
channel1 = (raw_lux_ch_1 * scale) >> LUX_CHSCALE;
// find the ratio of the channel values (Channel1/Channel0)
// protect against divide by zero
uint64_t ratio_1 = 0;
if (channel0 != 0)
ratio_1 = (channel1 << (LUX_RATIOSCALE+1)) / channel0;
// round the ratio value
int64_t ratio = (ratio_1 + 1) >> 1;
unsigned int b = 0, m = 0;
// CS package
// Check if ratio <= eachBreak ?
if ((ratio >= 0) && (ratio <= LUX_K1C)){
b=LUX_B1C; m=LUX_M1C;
}
else if (ratio <= LUX_K2C){
b=LUX_B2C; m=LUX_M2C;
}
else if (ratio <= LUX_K3C){
b=LUX_B3C; m=LUX_M3C;
}
else if (ratio <= LUX_K4C){
b=LUX_B4C; m=LUX_M4C;
}
else if (ratio <= LUX_K5C){
b=LUX_B5C; m=LUX_M5C;
}
else if (ratio <= LUX_K6C){
b=LUX_B6C; m=LUX_M6C;
}
else if (ratio <= LUX_K7C){
b=LUX_B7C; m=LUX_M7C;
}
else if (ratio > LUX_K8C){
b=LUX_B8C; m=LUX_M8C;
}
int64_t temp_lux = 0;
temp_lux = ((channel0 * b) - (channel1 * m));
// do not allow negative lux value
if (temp_lux < 0) temp_lux = 0;
// round lsb (2^(LUX_SCALE-1))
temp_lux += (1 << (LUX_SCALE-1));
// strip off fractional portion
lux = temp_lux >> LUX_SCALE;
*int_data = lux;
return UPM_SUCCESS;
}