upm/src/adc121c021/adc121c021.cxx
Adelin Dobre 252feac5c7 Add changes getting values for upm parameters
Signed-off-by: Adelin Dobre <adelin.dobre@rinftech.com>
2018-11-08 17:57:26 +02:00

345 lines
8.5 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2014 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <string>
#include <stdexcept>
#include "upm_string_parser.hpp"
#include "adc121c021.hpp"
using namespace upm;
using namespace std;
ADC121C021::ADC121C021(int bus, uint8_t address, float vref)
{
// setup our i2c link
m_i2c = mraa_i2c_init(bus);
if (!m_i2c)
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
return;
}
m_addr = address;
mraa_result_t ret = mraa_i2c_address(m_i2c, m_addr);
if (ret != MRAA_SUCCESS)
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_address() failed");
return;
}
m_vref = vref;
}
ADC121C021::ADC121C021(std::string initStr) : mraaIo(initStr)
{
mraa_io_descriptor* descs = mraaIo.getMraaDescriptors();
std::vector<std::string> upmTokens;
if (!mraaIo.getLeftoverStr().empty()) {
upmTokens = UpmStringParser::parse(mraaIo.getLeftoverStr());
}
if(!descs->i2cs)
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
}
else
{
if( !(m_i2c = descs->i2cs[0]) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
}
}
std::string::size_type sz;
for (std::string tok : upmTokens) {
if(tok.substr(0, 5) == "vref:") {
m_vref = std::stof(tok.substr(5));
}
if(tok.substr(0, 10) == "writeByte:") {
uint8_t reg = std::stoul(tok.substr(10), &sz, 0);
tok = tok.substr(10);
uint8_t byte = std::stoul(tok.substr(sz+1), nullptr, 0);
writeByte(reg, byte);
}
if(tok.substr(0,10) == "writeWord:") {
uint8_t reg = std::stoul(tok.substr(10), &sz, 0);
tok = tok.substr(10);
uint16_t word = std::stoul(tok.substr(sz+1), nullptr, 0);
writeWord(reg, word);
}
if(tok.substr(0,16) == "enableAlertFlag:") {
bool enable = std::stoi(tok.substr(16), nullptr, 0);
enableAlertFlag(enable);
}
if(tok.substr(0,15) == "enableAlertPin:") {
bool enable = std::stoi(tok.substr(15), nullptr, 0);
enableAlertPin(enable);
}
if(tok.substr(0,16) == "enableAlertHold:") {
bool enable = std::stoi(tok.substr(16), nullptr, 0);
enableAlertHold(enable);
}
if(tok.substr(0,27) == "enableAlertPinPolarityHigh:") {
bool enable = std::stoi(tok.substr(27), nullptr, 0);
enableAlertPinPolarityHigh(enable);
}
if(tok.substr(0,17) == "setAlertLowLimit:") {
uint16_t limit = std::stoul(tok.substr(17), nullptr, 0);
setAlertLowLimit(limit);
}
if(tok.substr(0,18) == "setAlertHighLimit:") {
uint16_t limit = std::stoul(tok.substr(18), nullptr, 0);
setAlertHighLimit(limit);
}
if(tok.substr(0,14) == "setHysteresis:") {
uint16_t limit = std::stoul(tok.substr(14), nullptr, 0);
setHysteresis(limit);
}
}
}
ADC121C021::~ADC121C021()
{
mraa_i2c_stop(m_i2c);
}
mraa_result_t ADC121C021::writeByte(uint8_t reg, uint8_t byte)
{
return mraa_i2c_write_byte_data(m_i2c, byte, reg);
}
mraa_result_t ADC121C021::writeWord(uint8_t reg, uint16_t word)
{
// We need to swap the bytes
uint8_t b1 = (word & 0xff00) >> 8;
word <<= 8;
word |= b1;
return mraa_i2c_write_word_data(m_i2c, word, reg);
}
uint8_t ADC121C021::readByte(uint8_t reg)
{
int val = mraa_i2c_read_byte_data(m_i2c, reg);
if (val != -1) {
return (uint8_t) val;
}
return 0;
}
uint16_t ADC121C021::readWord(uint8_t reg)
{
int x = mraa_i2c_read_word_data(m_i2c, reg);
if (x == -1) {
return 0;
}
uint16_t val = (uint16_t) x;
uint8_t b1;
// The value returned is in the wrong byte order, so we need to swap them
b1 = (val & 0xff00) >> 8;
val <<= 8;
val |= b1;
return val;
}
uint16_t ADC121C021::value()
{
// mask off alert flag and reserved bits
return (readWord(ADC121C021_REG_RESULT) & 0x0fff);
}
float ADC121C021::valueToVolts(uint16_t val)
{
// The arduino example multiplies this by 2, which seems wrong. If
// the reference voltage is 3.0, then you should never get a voltage
// value higher than that.
//
// val * m_vref * 2.0 / ADC121C021_RESOLUTION
return (val * m_vref / ADC121C021_RESOLUTION);
}
bool ADC121C021::getAlertStatus()
{
// high order bit is the alert flag, mask off the rest
bool rv = (readWord(ADC121C021_REG_RESULT) & 0x8000) ? true : false;
if (rv)
{
// read the alert low and high values and set the appropriate
// member variables
uint8_t astatus = readByte(ADC121C021_REG_ALERT_STATUS);
if (astatus & 0x01)
m_alertLow = true;
else
m_alertLow = false;
if (astatus & 0x02)
m_alertHigh = true;
else
m_alertHigh = false;
}
return rv;
}
void ADC121C021::clearAlertStatus()
{
// zero out both the low and high alert flags
writeByte(ADC121C021_REG_ALERT_STATUS, 0x03);
m_alertHigh = false;
m_alertLow = false;
}
void ADC121C021::enableAlertFlag(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x08;
else
val &= ~0x08;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertPin(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x04;
else
val &= ~0x04;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertHold(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x10;
else
val &= ~0x10;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertPinPolarityHigh(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x01;
else
val &= ~0x01;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::setAutomaticConversion(ADC121C021_CYCLE_TIME_T cycleTime)
{
// first we
// read the current config register, masking off the cycle time bits
uint8_t val = readByte(ADC121C021_REG_CONFIG) & 0x1f;
val |= ((uint8_t)cycleTime << 5);
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
mraa_result_t ADC121C021::setAlertLowLimit(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_LIM_UNDER, limit);
}
mraa_result_t ADC121C021::setAlertHighLimit(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_LIM_OVER, limit);
}
mraa_result_t ADC121C021::setHysteresis(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_HYS, limit);
}
uint16_t ADC121C021::getHighestConversion()
{
return readWord(ADC121C021_REG_HIGHEST_CONV);
}
uint16_t ADC121C021::getLowestConversion()
{
return readWord(ADC121C021_REG_LOWEST_CONV);
}
mraa_result_t ADC121C021::clearHighestConversion()
{
return writeWord(ADC121C021_REG_HIGHEST_CONV, 0x0000);
}
mraa_result_t ADC121C021::clearLowestConversion()
{
return writeWord(ADC121C021_REG_LOWEST_CONV, 0x0fff);
}