upm/src/m24lr64e/m24lr64e.cxx
Noel Eck 922e0cc26b cpp_headers: Renamed C++ headers from .h -> .hpp
To make room for UPM C and C++ sensor code to coexist, all UPM
C++ headers have been renamed from h -> hpp.  This commit contains
updates to documentation, includes, cmake collateral, examples, and
swig interface files.

    * Renamed all cxx/cpp header files which contain the string
    'copyright intel' from .h -> .hpp (if not already hpp).

    * Replaced all references to .h with .hpp in documentation,
    source files, cmake collateral, example code, and swig interface
    files.

    * Replaced cmake variable module_h with module_hpp.

    * Intentionally left upm.h since this file currently does not
    contain code (documentation only).

Signed-off-by: Noel Eck <noel.eck@intel.com>
2016-04-28 14:00:54 -07:00

307 lines
7.3 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <math.h>
#include <iostream>
#include <string>
#include "m24lr64e.hpp"
using namespace upm;
using namespace std;
M24LR64E::M24LR64E(int bus, AccessMode mode):
m_i2c(bus)
{
if (mode == USER_MODE)
m_addr = M24LR64E_DEFAULT_I2C_ADDR;
else
m_addr = M24LR64E_DEFAULT_I2C_ADDR_E2;
mraa::Result rv;
if ( (rv = m_i2c.address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.address() failed");
return;
}
}
M24LR64E::~M24LR64E()
{
}
bool M24LR64E::submitPasswd(uint32_t passwd)
{
// this device actually uses two bytes to address a register
const int pktLen = 11;
uint8_t buf[pktLen];
buf[0] = 0x09;
buf[1] = 0x00;
buf[2] = ((passwd >> 24) & 0xff);
buf[3] = ((passwd >> 16) & 0xff);
buf[4] = ((passwd >> 8) & 0xff);
buf[5] = (passwd & 0xff);
buf[6] = 0x09;
// the password is written twice
buf[7] = ((passwd >> 24) & 0xff);
buf[8] = ((passwd >> 16) & 0xff);
buf[9] = ((passwd >> 8) & 0xff);
buf[10] = (passwd & 0xff);
if (m_i2c.write(buf, pktLen))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
return false;
}
return true;
}
bool M24LR64E::writePasswd(uint32_t passwd)
{
const int pktLen = 11;
uint8_t buf[pktLen];
buf[0] = 0x09;
buf[1] = 0x00;
buf[2] = ((passwd >> 24) & 0xff);
buf[3] = ((passwd >> 16) & 0xff);
buf[4] = ((passwd >> 8) & 0xff);
buf[5] = (passwd & 0xff);
buf[6] = 0x07;
// the password is written twice
buf[7] = ((passwd >> 24) & 0xff);
buf[8] = ((passwd >> 16) & 0xff);
buf[9] = ((passwd >> 8) & 0xff);
buf[10] = (passwd & 0xff);
if (m_i2c.write(buf, pktLen))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
return false;
}
return true;
}
void M24LR64E::sectorProtectConfig(unsigned int sectorNumber,
bool protectEnable,
SectorAccessRight accessRight,
SectorSelectPassWd passwd)
{
if(!protectEnable) {
EEPROM_Write_Byte(sectorNumber,0x0);
} else {
EEPROM_Write_Byte(sectorNumber,
protectEnable | (accessRight<<1) |(passwd<<2));
}
}
void M24LR64E::clearSectorProtect(void)
{
uint8_t buf[64]={0x0};
EEPROM_Write_Bytes(0, buf, 64);
}
void M24LR64E::sectorWriteLockBit(unsigned int sectorNumber,
bool sockEnable)
{
unsigned int sectorAddress = SECTOR_SECURITY_STATUS_BASE_ADDR
+ (sectorNumber/8);
uint8_t sectorBit = sectorNumber % 8;
uint8_t preStatus = EEPROM_Read_Byte(sectorAddress);
bool status = (preStatus >> sectorBit) & 0x01;
if(status != sockEnable) {
if(status == true) {
writeByte(sectorAddress,preStatus&(~(1<<sectorBit)));
} else {
writeByte(sectorAddress,preStatus|(1<<sectorBit));
}
}
}
uint8_t M24LR64E::getDSFID()
{
return EEPROM_Read_Byte(DSFID_ADDR);
}
uint8_t M24LR64E::getAFI()
{
return EEPROM_Read_Byte(AFI_ADDR);
}
uint8_t *M24LR64E::getUID()
{
uint8_t* buffer = new uint8_t[UID_LENGTH];
EEPROM_Read_Bytes(UID_ADDR, buffer, UID_LENGTH);
return buffer;
}
uint32_t M24LR64E::getMemorySize()
{
uint32_t volume = 0x0;
volume = EEPROM_Read_Byte(MEM_SIZE_ADDR);
volume = volume<<8|EEPROM_Read_Byte(MEM_SIZE_ADDR+1);
volume = volume<<8|EEPROM_Read_Byte(MEM_SIZE_ADDR+2);
return volume;
}
void M24LR64E::clearMemory()
{
for(int i = 0; i < EEPROM_I2C_LENGTH; i++){
writeByte(i,0x0);
}
}
mraa::Result M24LR64E::writeByte(unsigned int address, uint8_t data)
{
return EEPROM_Write_Byte(address, data);
}
mraa::Result M24LR64E::writeBytes(unsigned int address, uint8_t* buffer, int len)
{
return EEPROM_Write_Bytes(address, buffer, len);
}
uint8_t M24LR64E::readByte(unsigned int address)
{
return EEPROM_Read_Byte(address);
}
int M24LR64E::readBytes(unsigned int address, uint8_t* buffer, int len)
{
return EEPROM_Read_Bytes(address, buffer, len);
}
mraa::Result M24LR64E::EEPROM_Write_Byte(unsigned int address, uint8_t data)
{
const int pktLen = 3;
uint8_t buf[pktLen];
mraa::Result rv;
buf[0] = ((address >> 8) & 0xff);
buf[1] = (address & 0xff);
buf[2] = data;
if ((rv = m_i2c.write(buf, pktLen)))
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
usleep(I2C_WRITE_TIME * 1000);
return rv;
}
mraa::Result M24LR64E::EEPROM_Write_Bytes(unsigned int address, uint8_t* data,
int len)
{
const int pktLen = 2 + len;
uint8_t buf[pktLen];
mraa::Result rv;
buf[0] = ((address >> 8) & 0xff);
buf[1] = (address & 0xff);
for (int i=0; i<len; i++)
buf[2+i] = data[i];
if ((rv = m_i2c.write(buf, pktLen)))
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
usleep(I2C_WRITE_TIME * 1000);
return rv;
}
uint8_t M24LR64E::EEPROM_Read_Byte(unsigned int address)
{
const int apktLen = 2;
uint8_t abuf[apktLen];
abuf[0] = ((address >> 8) & 0xff);
abuf[1] = (address & 0xff);
if (m_i2c.write(abuf, apktLen))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
return 0x00;
}
const int pktLen = 1;
uint8_t buf[apktLen];
buf[0] = 0;
if (m_i2c.read(buf, pktLen) != pktLen)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
return 0x00;
}
return buf[0];
}
int M24LR64E::EEPROM_Read_Bytes(unsigned int address,
uint8_t* buffer, int len)
{
const int apktLen = 2;
uint8_t abuf[apktLen];
abuf[0] = ((address >> 8) & 0xff);
abuf[1] = (address & 0xff);
if (m_i2c.write(abuf, apktLen))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.write() failed");
return false;
}
int rv = m_i2c.read(buffer, len);
if (rv != len)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.read() failed");
}
return rv;
}