Files
upm/src/lsm303agr/lsm303agr.c
2017-04-19 16:44:40 -06:00

793 lines
21 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include "upm_utilities.h"
#include "lsm303agr.h"
// some useful macros to save on typing and text wrapping
#undef _SHIFT
#define _SHIFT(x) (_LSM303AGR_##x##_SHIFT)
#undef _MASK
#define _MASK(x) (_LSM303AGR_##x##_MASK)
#undef _SHIFTMASK
#define _SHIFTMASK(x) (_MASK(x) << _SHIFT(x))
// init
lsm303agr_context lsm303agr_init(int bus, int acc_addr, int mag_addr)
{
if (acc_addr <= 0 && mag_addr <= 0)
{
printf("%s: At least one device must be enabled\n", __FUNCTION__);
return NULL;
}
lsm303agr_context dev =
(lsm303agr_context)malloc(sizeof(struct _lsm303agr_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _lsm303agr_context));
// make sure MRAA is initialized
if (mraa_init() != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
if (acc_addr > 0)
{
if (!(dev->i2cACC = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init(acc) failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2cACC, acc_addr))
{
printf("%s: mraa_i2c_address(acc) failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
// check the chip id
uint8_t chipID = lsm303agr_read_reg(dev, LSM303AGR_REG_WHO_AM_I_A);
if (chipID != LSM303AGR_CHIPID_ACC)
{
printf("%s: invalid accelerometer chip id: %02x. Expected %02x\n",
__FUNCTION__, chipID, LSM303AGR_CHIPID_ACC);
lsm303agr_close(dev);
return NULL;
}
}
// technically we could use a single i2c context since it is bus
// specific, but then we would need to call i2c_address() every
// time we wanted to talk to a specific device. In addition, we
// can use the i2c context pointer to determine if a subsystem
// (acc or mag) is actually enabled throughout this driver.
if (mag_addr > 0)
{
if (!(dev->i2cMAG = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init(mag) failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2cMAG, mag_addr))
{
printf("%s: mraa_i2c_address(mag) failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
// check the chip id
uint8_t chipID = lsm303agr_read_reg(dev, LSM303AGR_REG_WHO_AM_I_M);
if (chipID != LSM303AGR_CHIPID_MAG)
{
printf("%s: invalid magnetometer chip id: %02x. Expected %02x\n",
__FUNCTION__, chipID, LSM303AGR_CHIPID_MAG);
lsm303agr_close(dev);
return NULL;
}
}
// call devinit with a default high resolution mode
if (lsm303agr_devinit(dev, LSM303AGR_POWER_HIGH_RESOLUTION))
{
printf("%s: lsm303agr_devinit() failed.\n", __FUNCTION__);
lsm303agr_close(dev);
return NULL;
}
return dev;
}
void lsm303agr_close(lsm303agr_context dev)
{
assert(dev != NULL);
lsm303agr_uninstall_isr(dev, LSM303AGR_INTERRUPT_ACC_1);
lsm303agr_uninstall_isr(dev, LSM303AGR_INTERRUPT_ACC_2);
lsm303agr_uninstall_isr(dev, LSM303AGR_INTERRUPT_MAG);
if (dev->i2cACC)
mraa_i2c_stop(dev->i2cACC);
if (dev->i2cMAG)
mraa_i2c_stop(dev->i2cMAG);
free(dev);
}
upm_result_t lsm303agr_devinit(const lsm303agr_context dev,
LSM303AGR_POWER_MODE_T mode)
{
assert(dev != NULL);
// magnetometer
if (dev->i2cMAG)
{
// enable temp compensation and continuous mode
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CFG_REG_A_M);
reg &= ~_SHIFTMASK(CFG_REG_A_M_MD);
reg |= LSM303AGR_CFG_REG_A_M_COMP_TEMP_EN;
reg |= (LSM303AGR_CFG_A_M_MD_CONTINUOUS
<< _SHIFT(CFG_REG_A_M_MD));
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CFG_REG_A_M, reg))
{
printf("%s: lsm303agr_write_reg() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// set MAG ODR to 10Hz by default
if (lsm303agr_set_mag_odr(dev, LSM303AGR_CFG_A_M_ODR_10HZ))
{
printf("%s: lsm303agr_set_mag_odr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(10);
}
// accelerometer
if (dev->i2cACC)
{
// enable all axes
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG1_A);
reg |= LSM303AGR_CTRL_REG1_A_XEN
| LSM303AGR_CTRL_REG1_A_YEN
| LSM303AGR_CTRL_REG1_A_ZEN;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG1_A, reg))
{
printf("%s: lsm303agr_write_reg() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// enable BDU
reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG4_A);
reg |= LSM303AGR_CTRL_REG4_A_BDU;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG4_A, reg))
{
printf("%s: lsm303agr_write_reg() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// enable temperature measurement
reg = lsm303agr_read_reg(dev, LSM303AGR_REG_TEMP_CFG_REG_A);
reg &= ~_SHIFTMASK(TEMP_CFG_REG_A_TEMP_EN);
reg |= (LSM303AGR_TEMP_EN_ON
<< _SHIFT(TEMP_CFG_REG_A_TEMP_EN));
if (lsm303agr_write_reg(dev, LSM303AGR_REG_TEMP_CFG_REG_A, reg))
{
printf("%s: lsm303agr_write_reg() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// set ACC ODR to 100Hz by default
if (lsm303agr_set_acc_odr(dev, LSM303AGR_A_ODR_100HZ))
{
printf("%s: lsm303agr_set_acc_odr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// default to 2G sensitivity
if (lsm303agr_set_full_scale(dev, LSM303AGR_A_FS_2G))
{
printf("%s: lsm303agr_set_full_scale() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(10);
}
if (lsm303agr_set_power_mode(dev, mode))
{
printf("%s: lsm303agr_set_power_mode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
return UPM_SUCCESS;
}
upm_result_t lsm303agr_set_power_mode(const lsm303agr_context dev,
LSM303AGR_POWER_MODE_T mode)
{
assert(dev != NULL);
// magnetometer
if (dev->i2cMAG)
{
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CFG_REG_A_M);
// only low power or hires supported here
if (mode == LSM303AGR_POWER_LOW_POWER)
reg |= LSM303AGR_CFG_REG_A_M_LP;
else
reg &= ~LSM303AGR_CFG_REG_A_M_LP;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CFG_REG_A_M, reg))
return UPM_ERROR_OPERATION_FAILED;
}
// accelerometer
if (dev->i2cACC)
{
uint8_t reg1 = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG1_A);
uint8_t reg4 = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG4_A);
switch (mode)
{
case LSM303AGR_POWER_LOW_POWER:
reg1 |= LSM303AGR_CTRL_REG1_A_LPEN;
reg4 &= ~LSM303AGR_CTRL_REG4_A_HR;
break;
case LSM303AGR_POWER_NORMAL:
reg1 &= ~LSM303AGR_CTRL_REG1_A_LPEN;
reg4 &= ~LSM303AGR_CTRL_REG4_A_HR;
break;
case LSM303AGR_POWER_HIGH_RESOLUTION:
reg1 &= ~LSM303AGR_CTRL_REG1_A_LPEN;
reg4 |= LSM303AGR_CTRL_REG4_A_HR;
break;
}
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG1_A, reg1))
return UPM_ERROR_OPERATION_FAILED;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG4_A, reg4))
return UPM_ERROR_OPERATION_FAILED;
}
// settle
upm_delay_ms(10);
dev->powerMode = mode;
return UPM_SUCCESS;
}
upm_result_t lsm303agr_set_full_scale(const lsm303agr_context dev,
LSM303AGR_A_FS_T fs)
{
assert(dev != NULL);
// this only affects the accelerometer
if (dev->i2cACC)
{
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG4_A);
reg &= ~_SHIFTMASK(CTRL_REG4_A_FS);
reg |= (fs << _SHIFT(CTRL_REG4_A_FS));
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG4_A, reg))
return UPM_ERROR_OPERATION_FAILED;
upm_delay_ms(50);
// set our scaling factor depending on current power mode and
// FS
switch(dev->powerMode)
{
case LSM303AGR_POWER_LOW_POWER:
// 8b resolution
dev->accDivisor = 256.0;
switch (fs)
{
case LSM303AGR_A_FS_2G:
dev->accScale = 15.63;
break;
case LSM303AGR_A_FS_4G:
dev->accScale = 31.26;
break;
case LSM303AGR_A_FS_8G:
dev->accScale = 62.52;
break;
case LSM303AGR_A_FS_16G:
dev->accScale = 187.58;
break;
}
break;
case LSM303AGR_POWER_NORMAL:
// 10b resolution
dev->accDivisor = 64.0;
switch (fs)
{
case LSM303AGR_A_FS_2G:
dev->accScale = 3.9;
break;
case LSM303AGR_A_FS_4G:
dev->accScale = 7.82;
break;
case LSM303AGR_A_FS_8G:
dev->accScale = 15.63;
break;
case LSM303AGR_A_FS_16G:
dev->accScale = 46.9;
break;
}
break;
case LSM303AGR_POWER_HIGH_RESOLUTION:
// 12b resolution
dev->accDivisor = 16.0;
switch (fs)
{
case LSM303AGR_A_FS_2G:
dev->accScale = 0.98;
break;
case LSM303AGR_A_FS_4G:
dev->accScale = 1.95;
break;
case LSM303AGR_A_FS_8G:
dev->accScale = 3.9;
break;
case LSM303AGR_A_FS_16G:
dev->accScale = 11.72;
break;
}
break;
}
}
return UPM_SUCCESS;
}
upm_result_t lsm303agr_update(const lsm303agr_context dev)
{
assert(dev != NULL);
const int maxLen = 6;
uint8_t buf[maxLen];
if (dev->i2cACC)
{
// get the temperature first, only 2 bytes
if (lsm303agr_read_regs(dev, LSM303AGR_REG_OUT_TEMP_L_A, buf, 2) != 2)
{
printf("%s: lsm303agr_read_regs(temp) failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
dev->temperature = (float)((int16_t)(buf[0] | (buf[1] << 8)));
// next, acc data
if (lsm303agr_read_regs(dev, LSM303AGR_REG_OUT_X_L_A, buf,
maxLen) != maxLen)
{
printf("%s: lsm303agr_read_regs(acc) failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
dev->accX = (float)((int16_t)(buf[0] | (buf[1] << 8)));
dev->accY = (float)((int16_t)(buf[2] | (buf[3] << 8)));
dev->accZ = (float)((int16_t)(buf[4] | (buf[5] << 8)));
}
if (dev->i2cMAG)
{
// now mag data
if (lsm303agr_read_regs(dev,LSM303AGR_REG_OUTX_L_REG_M, buf,
maxLen) != maxLen)
{
printf("%s: lsm303agr_read_regs(mag) failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
dev->magX = (float)((int16_t)(buf[0] | (buf[1] << 8)));
dev->magY = (float)((int16_t)(buf[2] | (buf[3] << 8)));
dev->magZ = (float)((int16_t)(buf[4] | (buf[5] << 8)));
}
return UPM_SUCCESS;
}
uint8_t lsm303agr_read_reg(const lsm303agr_context dev, uint8_t reg)
{
assert(dev != NULL);
mraa_i2c_context i2c = NULL;
if (reg <= LSM303AGR_MAX_ACC_ADDR)
i2c = dev->i2cACC;
else
i2c = dev->i2cMAG;
if (i2c)
{
int rv = mraa_i2c_read_byte_data(i2c, reg);
if (rv < 0)
{
printf("%s: mraa_i2c_read_byte_data() failed\n", __FUNCTION__);
return 0xff;
}
return (uint8_t)rv;
}
else // shouldn't happen, but...
return 0xff;
}
int lsm303agr_read_regs(const lsm303agr_context dev, uint8_t reg,
uint8_t *buffer, int len)
{
assert(dev != NULL);
mraa_i2c_context i2c = NULL;
if (reg <= LSM303AGR_MAX_ACC_ADDR)
i2c = dev->i2cACC;
else
i2c = dev->i2cMAG;
if (i2c)
{
reg |= 0x80; // enable auto-increment
if (mraa_i2c_read_bytes_data(i2c, reg, buffer, len) != len)
return -1;
}
else
return -1;
return len;
}
upm_result_t lsm303agr_write_reg(const lsm303agr_context dev,
uint8_t reg, uint8_t val)
{
assert(dev != NULL);
mraa_i2c_context i2c = NULL;
if (reg <= LSM303AGR_MAX_ACC_ADDR)
i2c = dev->i2cACC;
else
i2c = dev->i2cMAG;
if (i2c)
{
if (mraa_i2c_write_byte_data(i2c, val, reg))
{
printf("%s: mraa_i2c_write_byte_data() failed.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
else
return UPM_ERROR_NO_RESOURCES;
return UPM_SUCCESS;
}
float lsm303agr_get_temperature(const lsm303agr_context dev)
{
assert(dev != NULL);
// DS says 8 bits. It is not clear in the DS how to compute this,
// but the following seems to produce a reasonably correct
// temperature.
return (dev->temperature / 256.0) + 25.0;
}
void lsm303agr_get_magnetometer(const lsm303agr_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
// 1.5 comes from the datasheet. Output is in milli-Gauss - we
// convert and return it in uT (SI micro-teslas) instead.
if (x)
*x = (dev->magX * 1.5) / 10.0;
if (y)
*y = (dev->magY * 1.5) / 10.0;
if (z)
*z = (dev->magZ * 1.5) / 10.0;
}
void lsm303agr_get_accelerometer(const lsm303agr_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = ((dev->accX / dev->accDivisor) * dev->accScale) / 1000.0;
if (y)
*y = ((dev->accY / dev->accDivisor) * dev->accScale) / 1000.0;
if (z)
*z = ((dev->accZ / dev->accDivisor) * dev->accScale) / 1000.0;
}
upm_result_t lsm303agr_set_acc_odr(const lsm303agr_context dev,
LSM303AGR_A_ODR_T odr)
{
assert(dev != NULL);
if (!dev->i2cACC)
return UPM_ERROR_NO_RESOURCES;
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CTRL_REG1_A);
reg &= ~_SHIFTMASK(CTRL_REG1_A_ODR);
reg |= (odr << _SHIFT(CTRL_REG1_A_ODR));
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CTRL_REG1_A, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t lsm303agr_set_mag_odr(const lsm303agr_context dev,
LSM303AGR_CFG_A_M_ODR_T odr)
{
assert(dev != NULL);
if (!dev->i2cMAG)
return UPM_ERROR_NO_RESOURCES;
uint8_t reg = lsm303agr_read_reg(dev, LSM303AGR_REG_CFG_REG_A_M);
reg &= ~_SHIFTMASK(CFG_REG_A_M_ODR);
reg |= (odr << _SHIFT(CFG_REG_A_M_ODR));
if (lsm303agr_write_reg(dev, LSM303AGR_REG_CFG_REG_A_M, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t lsm303agr_get_acc_int1_config(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cACC)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT1_CFG_A);
}
upm_result_t lsm303agr_set_acc_int1_config(const lsm303agr_context dev,
uint8_t bits)
{
assert(dev != NULL);
if (!dev->i2cACC)
return UPM_ERROR_NO_RESOURCES;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_INT1_CFG_A, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t lsm303agr_get_acc_int2_config(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cACC)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT2_CFG_A);
}
upm_result_t lsm303agr_set_acc_int2_config(const lsm303agr_context dev,
uint8_t bits)
{
assert(dev != NULL);
if (!dev->i2cACC)
return UPM_ERROR_NO_RESOURCES;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_INT2_CFG_A, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t lsm303agr_get_mag_int_config(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cMAG)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT_CTRL_REG_M);
}
upm_result_t lsm303agr_set_mag_int_config(const lsm303agr_context dev,
uint8_t bits)
{
assert(dev != NULL);
if (!dev->i2cMAG)
return UPM_ERROR_NO_RESOURCES;
if (lsm303agr_write_reg(dev, LSM303AGR_REG_INT_CTRL_REG_M, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t lsm303agr_get_acc_int1_src(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cACC)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT1_SRC_A);
}
uint8_t lsm303agr_get_acc_int2_src(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cACC)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT2_SRC_A);
}
uint8_t lsm303agr_get_mag_int_src(const lsm303agr_context dev)
{
assert(dev != NULL);
if (!dev->i2cMAG)
return 0;
return lsm303agr_read_reg(dev, LSM303AGR_REG_INT_SRC_REG_M);
}
upm_result_t lsm303agr_install_isr(const lsm303agr_context dev,
LSM303AGR_INTERRUPT_PINS_T intr, int gpio,
mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
assert(dev != NULL);
// delete any existing ISR and GPIO context for this interrupt
lsm303agr_uninstall_isr(dev, intr);
mraa_gpio_context gpio_isr = NULL;
// create gpio context
if (!(gpio_isr = mraa_gpio_init(gpio)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_dir(gpio_isr, MRAA_GPIO_IN);
if (mraa_gpio_isr(gpio_isr, level, isr, arg))
{
mraa_gpio_close(gpio_isr);
printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
switch (intr)
{
case LSM303AGR_INTERRUPT_ACC_1:
dev->gpioACC1 = gpio_isr;
break;
case LSM303AGR_INTERRUPT_ACC_2:
dev->gpioACC2 = gpio_isr;
break;
case LSM303AGR_INTERRUPT_MAG:
dev->gpioMAG = gpio_isr;
break;
}
return UPM_SUCCESS;
}
void lsm303agr_uninstall_isr(const lsm303agr_context dev,
LSM303AGR_INTERRUPT_PINS_T intr)
{
assert(dev != NULL);
switch (intr)
{
case LSM303AGR_INTERRUPT_ACC_1:
if (dev->gpioACC1)
{
mraa_gpio_isr_exit(dev->gpioACC1);
mraa_gpio_close(dev->gpioACC1);
dev->gpioACC1 = NULL;
}
break;
case LSM303AGR_INTERRUPT_ACC_2:
if (dev->gpioACC2)
{
mraa_gpio_isr_exit(dev->gpioACC2);
mraa_gpio_close(dev->gpioACC2);
dev->gpioACC2 = NULL;
}
break;
case LSM303AGR_INTERRUPT_MAG:
if (dev->gpioMAG)
{
mraa_gpio_isr_exit(dev->gpioMAG);
mraa_gpio_close(dev->gpioMAG);
dev->gpioMAG = NULL;
}
break;
}
}