upm/src/ds18b20/ds18b20.c
Jon Trulson cc0174910b ds18b20: fix delay timing error in ds18b20_update()
Due to the change of using upm_delay_ms() instead of usleep(), but
failing to adjust the delay time accordingly, ds18b20_update() was
waiting for 750000ms (12 minutes) before reading the result of a
measurement, instead of the more appropriate 750ms.

This should fix Issue #530.

Signed-off-by: Jon Trulson <jtrulson@ics.com>
2017-03-13 12:05:22 -06:00

401 lines
12 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016-2017 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <upm_utilities.h>
#include "ds18b20.h"
// an internal struct we use to store information on the devices
// found during initialization
struct _ds18b20_info_t {
uint8_t id[MRAA_UART_OW_ROMCODE_SIZE]; // 8-byte romcode id
float temperature;
DS18B20_RESOLUTIONS_T resolution;
};
// internal utility function forward to read temperature from a single
// device
static float readSingleTemp(const ds18b20_context dev, unsigned int index);
ds18b20_context ds18b20_init(unsigned int uart)
{
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
return NULL;
}
ds18b20_context dev =
(ds18b20_context)malloc(sizeof(struct _ds18b20_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _ds18b20_context));
dev->ow = NULL;
if (!(dev->ow = mraa_uart_ow_init(uart)))
{
printf("%s: mraa_uart_ow_init() failed.\n", __FUNCTION__);
ds18b20_close(dev);
return NULL;
}
// iterate through the bus and build up a list of detected DS18B20
// devices (only)
mraa_result_t rv;
if ((rv = mraa_uart_ow_reset(dev->ow)) != MRAA_SUCCESS)
{
printf("%s: mraa_uart_ow_reset() failed, no devices detected\n",
__FUNCTION__);
ds18b20_close(dev);
return NULL;
}
uint8_t id[MRAA_UART_OW_ROMCODE_SIZE];
rv = mraa_uart_ow_rom_search(dev->ow, 1, id);
if (rv == MRAA_ERROR_UART_OW_NO_DEVICES)
{
// shouldn't happen, but....
printf("%s: mraa_uart_ow_rom_search() failed, no devices detected\n",
__FUNCTION__);
ds18b20_close(dev);
return NULL;
}
if (rv == MRAA_ERROR_UART_OW_DATA_ERROR)
{
printf("%s: mraa_uart_ow_rom_search() failed, Bus/Data error\n",
__FUNCTION__);
ds18b20_close(dev);
return NULL;
}
while (rv == MRAA_SUCCESS)
{
// The first byte (id[0]]) is the device type (family) code. We
// are only interested in the family code for these devices.
if ((uint8_t)id[0] == DS18B20_FAMILY_CODE)
{
ds18b20_info_t *dsPtr =
(ds18b20_info_t *)realloc((void *)dev->devices,
sizeof(ds18b20_info_t) *
(dev->numDevices + 1));
if (!dsPtr)
{
printf("%s: realloc(%zu) failed\n",
__FUNCTION__,
sizeof(ds18b20_info_t) * (dev->numDevices + 1));
ds18b20_close(dev);
return NULL;
}
dev->devices = dsPtr;
// copy in the romcode
memcpy(dev->devices[dev->numDevices].id, id,
MRAA_UART_OW_ROMCODE_SIZE);
// set defaults for now
dev->devices[dev->numDevices].temperature = 0.0;
dev->devices[dev->numDevices].resolution =
DS18B20_RESOLUTION_12BITS;
dev->numDevices++;
}
// on to the next one
rv = mraa_uart_ow_rom_search(dev->ow, 0, id);
}
if (!dev->numDevices || !dev->devices)
{
printf("%s: no DS18B20 devices found on bus\n", __FUNCTION__);
ds18b20_close(dev);
return NULL;
}
// iterate through the found devices and query their resolutions
int i;
for (i=0; i<dev->numDevices; i++)
{
// read only the first 5 bytes of the scratchpad
static const int numScratch = 5;
uint8_t scratch[numScratch];
mraa_uart_ow_command(dev->ow, DS18B20_CMD_READ_SCRATCHPAD,
dev->devices[i].id);
int j;
for (j=0; j<numScratch; j++)
scratch[j] = (uint8_t)mraa_uart_ow_read_byte(dev->ow);
// config byte, shift the resolution to bit 0
scratch[4] >>= _DS18B20_CFG_RESOLUTION_SHIFT;
switch (scratch[4] & _DS18B20_CFG_RESOLUTION_MASK)
{
case 0: dev->devices[i].resolution = DS18B20_RESOLUTION_9BITS; break;
case 1: dev->devices[i].resolution = DS18B20_RESOLUTION_10BITS; break;
case 2: dev->devices[i].resolution = DS18B20_RESOLUTION_11BITS; break;
case 3: dev->devices[i].resolution = DS18B20_RESOLUTION_12BITS; break;
}
// reset the bus
mraa_uart_ow_reset(dev->ow);
}
return dev;
}
void ds18b20_close(ds18b20_context dev)
{
assert(dev != NULL);
if (dev->devices)
free(dev->devices);
if (dev->ow)
mraa_uart_ow_stop(dev->ow);
free(dev);
}
void ds18b20_update(const ds18b20_context dev, int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return;
}
// should we update all of them?
bool doAll = (index < 0) ? true : false;
if (doAll)
{
// if we want to update all of them, we will first send the
// convert command to all of them, then wait. This will be
// faster, timey-wimey wise, then converting, sleeping, and
// reading each individual sensor.
int i;
for (i=0; i<dev->numDevices; i++)
mraa_uart_ow_command(dev->ow, DS18B20_CMD_CONVERT, dev->devices[i].id);
}
else
mraa_uart_ow_command(dev->ow, DS18B20_CMD_CONVERT, dev->devices[index].id);
// wait for conversion(s) to finish
upm_delay_ms(750); // 750ms max
if (doAll)
{
int i;
for (i=0; i<dev->numDevices; i++)
dev->devices[i].temperature = readSingleTemp(dev, i);
}
else
dev->devices[index].temperature = readSingleTemp(dev, index);
}
// utility function to read temp data from a single sensor
static float readSingleTemp(const ds18b20_context dev, unsigned int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return 0.0;
}
static const int numScratch = 9;
uint8_t scratch[numScratch];
// read the 9-byte scratchpad
mraa_uart_ow_command(dev->ow, DS18B20_CMD_READ_SCRATCHPAD,
dev->devices[index].id);
int i;
for (i=0; i<numScratch; i++)
scratch[i] = (uint8_t)mraa_uart_ow_read_byte(dev->ow);
// validate cksum -- if we get an error, we will warn and simply
// return the current (previously read) temperature
uint8_t crc = mraa_uart_ow_crc8(scratch, 8);
if (crc != scratch[8])
{
printf("%s: crc check failed for device %d. Got %02x, expected %02x."
" Returning previously measured temperature\n",
__FUNCTION__, index, scratch[8], crc);
return dev->devices[index].temperature;
}
// check the sign bit(s)
bool negative = (scratch[1] & 0x80) ? true : false;
// shift everything into position
int16_t temp = (scratch[1] << 8) | scratch[0];
// grab the fractional
uint8_t frac = temp & 0x0f;
// depending on the resolution, some frac bits should be ignored, so
// we mask them off. For 12bits, all bits are valid so we leve them
// alone.
switch (dev->devices[index].resolution)
{
case DS18B20_RESOLUTION_9BITS: frac &= 0x08; break;
case DS18B20_RESOLUTION_10BITS: frac &= 0x0c; break;
case DS18B20_RESOLUTION_11BITS: frac &= 0x0e; break;
// use all bits for 12b
case DS18B20_RESOLUTION_12BITS: break;
default:
printf("%s: Internal error, invalid resolution %d\n",
__FUNCTION__, (int)dev->devices[index].resolution);
break;
}
// remove the fractional with extreme prejudice
temp >>= 4;
// compensate for sign
if (negative)
temp -= 65536; // 2^^16
// convert
return ( (float)temp + ((float)frac * 0.0625) );
}
float ds18b20_get_temperature(const ds18b20_context dev, unsigned int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return 0.0;
}
return dev->devices[index].temperature;
}
void ds18b20_set_resolution(const ds18b20_context dev, unsigned int index,
DS18B20_RESOLUTIONS_T res)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return;
}
static const int numScratch = 9;
uint8_t scratch[numScratch];
// read the 9-byte scratchpad
mraa_uart_ow_command(dev->ow, DS18B20_CMD_READ_SCRATCHPAD,
dev->devices[index].id);
int i;
for (i=0; i<numScratch; i++)
scratch[i] = (uint8_t)mraa_uart_ow_read_byte(dev->ow);
// resolution is stored in byte 4
scratch[4] = ((scratch[4] & ~(_DS18B20_CFG_RESOLUTION_MASK <<
_DS18B20_CFG_RESOLUTION_SHIFT))
| (res << _DS18B20_CFG_RESOLUTION_SHIFT));
// now, write back, we only write 3 bytes (2-4), no cksum.
mraa_uart_ow_command(dev->ow, DS18B20_CMD_WRITE_SCRATCHPAD,
dev->devices[index].id);
for (i=0; i<3; i++)
mraa_uart_ow_write_byte(dev->ow, scratch[i+2]);
}
void ds18b20_copy_scratchpad(const ds18b20_context dev, unsigned int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return;
}
// issue the command
mraa_uart_ow_command(dev->ow, DS18B20_CMD_COPY_SCRATCHPAD,
dev->devices[index].id);
upm_delay(1); // to be safe...
}
void ds18b20_recall_eeprom(const ds18b20_context dev, unsigned int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
{
printf("%s: device index %d out of range\n", __FUNCTION__, index);
return;
}
// issue the command
mraa_uart_ow_command(dev->ow, DS18B20_CMD_RECALL_EEPROM,
dev->devices[index].id);
// issue read timeslots until a '1' is read back, indicating completion
while (!mraa_uart_ow_bit(dev->ow, 1))
upm_delay_us(100);
}
unsigned int ds18b20_devices_found(const ds18b20_context dev)
{
assert(dev != NULL);
return dev->numDevices;
}
const uint8_t *ds18b20_get_id(const ds18b20_context dev, unsigned int index)
{
assert(dev != NULL);
if (index >= dev->numDevices)
return NULL;
static uint8_t id[MRAA_UART_OW_ROMCODE_SIZE];
memcpy(id, dev->devices[index].id, MRAA_UART_OW_ROMCODE_SIZE);
return id;
}