upm/src/bma220/bma220.cxx
Adelin Dobre 55f749529f BMA220: Add string based cons for Accelerometer
Signed-off-by: Adelin Dobre <adelin.dobre@rinftech.com>
Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
2019-04-04 22:19:20 -07:00

569 lines
12 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <string.h>
#include "bma220.hpp"
#include "upm_string_parser.hpp"
using namespace upm;
using namespace std;
BMA220::BMA220(int bus, uint8_t addr) :
m_i2c(new mraa::I2c(bus)), m_gpioIntr(0)
{
m_addr = addr;
m_accelX = 0.0;
m_accelY = 0.0;
m_accelZ = 0.0;
m_accelScale = 0.0;
mraa::Result rv;
if ( (rv = m_i2c->address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(string(__FUNCTION__) +
": I2c.address() failed");
return;
}
// Init the accelerometer
enableAxes(true, true, true);
// set scaling rate
if (!setAccelerometerScale(FSL_RANGE_2G))
{
throw std::runtime_error(string(__FUNCTION__) +
": Unable to set accel scale");
return;
}
}
BMA220::BMA220(std::string initStr) : mraaIo(new mraa::MraaIo(initStr))
{
m_accelX = 0.0;
m_accelY = 0.0;
m_accelZ = 0.0;
m_accelScale = 0.0;
if(mraaIo == NULL) {
throw std::invalid_argument(std::string(__FUNCTION__) +
": Failed to allocate memory for internal member");
}
if(!mraaIo->i2cs.empty()) {
m_i2c = &mraaIo->i2cs[0];
}
else {
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
}
// Init the accelerometer
enableAxes(true, true, true);
// set scaling rate
if (!setAccelerometerScale(FSL_RANGE_2G))
{
throw std::runtime_error(string(__FUNCTION__) +
": Unable to set accel scale");
return;
}
}
BMA220::~BMA220()
{
uninstallISR();
if(mraaIo != NULL)
delete mraaIo;
else
delete m_i2c;
}
void BMA220::update()
{
updateAccelerometer();
}
void BMA220::updateAccelerometer()
{
int x, y, z;
char buf = 0;
buf = (char)readReg(REG_ACC_X);
x = int(buf) / 4;
buf = (char)readReg(REG_ACC_Y);
y = int(buf) / 4;
buf = (char)readReg(REG_ACC_Z);
z = int(buf) / 4;
m_accelX = float(x);
m_accelY = float(y);
m_accelZ = float(z);
}
uint8_t BMA220::readReg(uint8_t reg)
{
return m_i2c->readReg(reg);
}
bool BMA220::writeReg(uint8_t reg, uint8_t val)
{
mraa::Result rv;
if ((rv = m_i2c->writeReg(reg, val)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool BMA220::setAccelerometerScale(FSL_RANGE_T scale)
{
uint8_t reg = readReg(REG_SBIST_FSL_CONFIG);
reg &= ~(_REG_SBIST_FSL_RANGE_MASK << _REG_SBIST_FSL_RANGE_SHIFT);
reg |= (scale << _REG_SBIST_FSL_RANGE_SHIFT);
if (!writeReg(REG_SBIST_FSL_CONFIG, reg))
{
return false;
}
// store scaling factor
switch (scale)
{
case FSL_RANGE_2G:
m_accelScale = 16.0;
break;
case FSL_RANGE_4G:
m_accelScale = 8.0;
break;
case FSL_RANGE_8G:
m_accelScale = 4.0;
break;
case FSL_RANGE_16G:
m_accelScale = 2.0;
break;
default: // should never occur, but...
m_accelScale = 0.0; // set a safe, though incorrect value
throw std::logic_error(string(__FUNCTION__) +
": internal error, unsupported scale");
break;
}
return true;
}
void BMA220::getAccelerometer(float *x, float *y, float *z)
{
if (x)
*x = m_accelX / m_accelScale;
if (y)
*y = m_accelY / m_accelScale;
if (z)
*z = m_accelZ / m_accelScale;
}
std::vector<float> BMA220::getAccelerometer()
{
std::vector<float> v(3);
getAccelerometer(&v[0], &v[1], &v[2]);
return v;
}
std::vector<float> BMA220::getAcceleration()
{
std::vector<float> v(3);
update();
v[0] = m_accelX / m_accelScale;
v[1] = m_accelY / m_accelScale;
v[2] = m_accelZ / m_accelScale;
return v;
}
uint8_t BMA220::getChipID()
{
return readReg(REG_CHIPID);
}
uint8_t BMA220::getChipRevision()
{
return readReg(REG_REVISIONID);
}
bool BMA220::setFilterConfig(FILTER_CONFIG_T filter)
{
uint8_t reg = readReg(REG_FILTER_CONFIG);
reg &= ~(_FILTER_CONFIG_FILTER_MASK << _FILTER_CONFIG_FILTER_SHIFT);
reg |= (filter << _FILTER_CONFIG_FILTER_SHIFT);
return writeReg(REG_FILTER_CONFIG, reg);
}
bool BMA220::setSerialHighBW(bool high)
{
uint8_t reg = readReg(REG_FILTER_CONFIG);
if (high)
reg |= FILTER_CONFIG_SERIAL_HIGH_BW;
else
reg &= ~FILTER_CONFIG_SERIAL_HIGH_BW;
return writeReg(REG_FILTER_CONFIG, reg);
}
bool BMA220::enableAxes(bool xEn, bool yEn, bool zEn)
{
uint8_t reg = readReg(REG_ENABLE_CONFIG3);
if (xEn)
reg |= ENABLE_CONFIG3_X_CHAN;
else
reg &= ~ENABLE_CONFIG3_X_CHAN;
if (yEn)
reg |= ENABLE_CONFIG3_Y_CHAN;
else
reg &= ~ENABLE_CONFIG3_Y_CHAN;
if (zEn)
reg |= ENABLE_CONFIG3_Z_CHAN;
else
reg &= ~ENABLE_CONFIG3_Z_CHAN;
return writeReg(REG_ENABLE_CONFIG3, reg);
}
uint8_t BMA220::suspend()
{
return readReg(REG_SUSPEND);
}
uint8_t BMA220::softReset()
{
return readReg(REG_SOFTRESET);
}
bool BMA220::sleep(bool enable)
{
uint8_t reg = readReg(REG_ENABLE_CONFIG3);
if (enable)
reg |= ENABLE_CONFIG3_SLEEP_EN;
else
reg &= ~ENABLE_CONFIG3_SLEEP_EN;
return writeReg(REG_ENABLE_CONFIG3, reg);
}
bool BMA220::setSleepDuration(SLEEP_DUR_T dur)
{
uint8_t reg = readReg(REG_ENABLE_CONFIG3);
reg &= ~(_ENABLE_CONFIG3_SLEEP_DUR_MASK << _ENABLE_CONFIG3_SLEEP_DUR_SHIFT);
reg |= (dur << _ENABLE_CONFIG3_SLEEP_DUR_SHIFT);
return writeReg(REG_ENABLE_CONFIG3, reg);
}
bool BMA220::setLowGThreshold(uint8_t thresh)
{
uint8_t reg = readReg(REG_THRESHOLD);
thresh &= 0x0f;
reg &= ~(_THRESHOLD_LOW_MASK << _THRESHOLD_LOW_SHIFT);
reg |= (thresh << _THRESHOLD_LOW_SHIFT);
return writeReg(REG_THRESHOLD, reg);
}
bool BMA220::setHighGThreshold(uint8_t thresh)
{
uint8_t reg = readReg(REG_THRESHOLD);
thresh &= 0x0f;
reg &= ~(_THRESHOLD_HIGH_MASK << _THRESHOLD_HIGH_SHIFT);
reg |= (thresh << _THRESHOLD_HIGH_SHIFT);
return writeReg(REG_THRESHOLD, reg);
}
bool BMA220::setLowGHysteresis(uint8_t hyst)
{
uint8_t reg = readReg(REG_L_HYST_DUR);
hyst &= _L_HYST_DUR_LOW_HY_MASK;
reg &= ~(_L_HYST_DUR_LOW_HY_MASK << _L_HYST_DUR_LOW_HY_SHIFT);
reg |= (hyst << _L_HYST_DUR_LOW_HY_SHIFT);
return writeReg(REG_L_HYST_DUR, reg);
}
bool BMA220::setLowGDuration(uint8_t dur)
{
uint8_t reg = readReg(REG_L_HYST_DUR);
dur &= _L_HYST_DUR_LOW_DUR_MASK;
reg &= ~(_L_HYST_DUR_LOW_DUR_MASK << _L_HYST_DUR_LOW_DUR_SHIFT);
reg |= (dur << _L_HYST_DUR_LOW_DUR_SHIFT);
return writeReg(REG_L_HYST_DUR, reg);
}
bool BMA220::setHighGHysteresis(uint8_t hyst)
{
uint8_t reg = readReg(REG_H_HYST_DUR);
hyst &= _H_HYST_DUR_HIGH_HY_MASK;
reg &= ~(_H_HYST_DUR_HIGH_HY_MASK << _H_HYST_DUR_HIGH_HY_SHIFT);
reg |= (hyst << _H_HYST_DUR_HIGH_HY_SHIFT);
return writeReg(REG_H_HYST_DUR, reg);
}
bool BMA220::setHighGDuration(uint8_t dur)
{
uint8_t reg = readReg(REG_H_HYST_DUR);
dur &= _H_HYST_DUR_HIGH_DUR_MASK;
reg &= ~(_H_HYST_DUR_HIGH_DUR_MASK << _H_HYST_DUR_HIGH_DUR_SHIFT);
reg |= (dur << _H_HYST_DUR_HIGH_DUR_SHIFT);
return writeReg(REG_H_HYST_DUR, reg);
}
bool BMA220::setTapDuration(uint8_t dur)
{
uint8_t reg = readReg(REG_TAP_CONFIG);
dur &= _TAP_CONFIG_DUR_MASK;
reg &= ~(_TAP_CONFIG_DUR_MASK << _TAP_CONFIG_DUR_SHIFT);
reg |= (dur << _TAP_CONFIG_DUR_SHIFT);
return writeReg(REG_TAP_CONFIG, reg);
}
bool BMA220::setTapThreshold(uint8_t thresh)
{
uint8_t reg = readReg(REG_TAP_CONFIG);
thresh &= _TAP_CONFIG_THRESH_MASK;
reg &= ~(_TAP_CONFIG_THRESH_MASK << _TAP_CONFIG_THRESH_SHIFT);
reg |= (thresh << _TAP_CONFIG_THRESH_SHIFT);
return writeReg(REG_TAP_CONFIG, reg);
}
bool BMA220::enableTapFilter(bool filt)
{
uint8_t reg = readReg(REG_TAP_CONFIG);
if (filt)
reg |= TAP_CONFIG_FILTER;
else
reg &= ~TAP_CONFIG_FILTER;
return writeReg(REG_TAP_CONFIG, reg);
}
bool BMA220::setSlopeDuration(uint8_t dur)
{
uint8_t reg = readReg(REG_SLOPE_CONFIG);
dur &= _SLOPE_CONFIG_DUR_MASK;
reg &= ~(_SLOPE_CONFIG_DUR_MASK << _SLOPE_CONFIG_DUR_SHIFT);
reg |= (dur << _SLOPE_CONFIG_DUR_SHIFT);
return writeReg(REG_SLOPE_CONFIG, reg);
}
bool BMA220::setSlopeThreshold(uint8_t thresh)
{
uint8_t reg = readReg(REG_SLOPE_CONFIG);
thresh &= _SLOPE_CONFIG_THRESH_MASK;
reg &= ~(_SLOPE_CONFIG_THRESH_MASK << _SLOPE_CONFIG_THRESH_SHIFT);
reg |= (thresh << _SLOPE_CONFIG_THRESH_SHIFT);
return writeReg(REG_SLOPE_CONFIG, reg);
}
bool BMA220::enableSlopeFilter(bool filt)
{
uint8_t reg = readReg(REG_SLOPE_CONFIG);
if (filt)
reg |= SLOPE_CONFIG_FILTER;
else
reg &= ~SLOPE_CONFIG_FILTER;
return writeReg(REG_SLOPE_CONFIG, reg);
}
uint8_t BMA220::getInterruptStatus1()
{
return (readReg(REG_INT_STATUS1) & 0x8f);
}
BMA220::CONFIG_ORIENT_T BMA220::getOrient()
{
uint8_t reg = readReg(REG_INT_STATUS2);
reg &= (_INT_STATUS1_ORIENT_MASK << _INT_STATUS1_ORIENT_SHIFT);
reg >>= _INT_STATUS1_ORIENT_SHIFT;
return (CONFIG_ORIENT_T)reg;
}
uint8_t BMA220::getInterruptStatus2()
{
return (readReg(REG_INT_STATUS2) & 0x1f);
}
bool BMA220::setInterruptEnables1(uint8_t bits)
{
return writeReg(REG_ENABLE_CONFIG, bits);
}
uint8_t BMA220::getInterruptEnables1()
{
return readReg(REG_ENABLE_CONFIG);
}
bool BMA220::setInterruptEnables2(uint8_t bits)
{
uint8_t reg = readReg(REG_ENABLE_CONFIG2);
// only the first 4 bits...
bits &= 0x0f;
reg &= 0x0f;
reg |= bits;
return writeReg(REG_ENABLE_CONFIG2, reg);
}
uint8_t BMA220::getInterruptEnables2()
{
return (readReg(REG_ENABLE_CONFIG2) & 0x0f);
}
bool BMA220::setInterruptLatch(CONFIG2_LAT_T lat)
{
uint8_t reg = readReg(REG_ENABLE_CONFIG2);
reg &= ~(_ENABLE_CONFIG2_LAT_INT_MASK << _ENABLE_CONFIG2_LAT_INT_SHIFT);
reg |= (lat << _ENABLE_CONFIG2_LAT_INT_SHIFT);
return writeReg(REG_ENABLE_CONFIG2, reg);
}
bool BMA220::resetInterrupts()
{
// This resets the interrupt controller, and should be called
// whenever the interrupt configuration changes
uint8_t reg = readReg(REG_ENABLE_CONFIG2);
reg |= ENABLE_CONFIG2_RESET_INT;
return writeReg(REG_ENABLE_CONFIG2, reg);
}
void BMA220::installISR(int gpio, mraa::Edge level,
void (*isr)(void *), void *arg)
{
// delete any existing ISR and GPIO context
uninstallISR();
// create gpio context
m_gpioIntr = new mraa::Gpio(gpio);
m_gpioIntr->dir(mraa::DIR_IN);
m_gpioIntr->isr(level, isr, arg);
}
void BMA220::uninstallISR()
{
if (m_gpioIntr)
{
m_gpioIntr->isrExit();
delete m_gpioIntr;
m_gpioIntr = 0;
}
}
mraa::Gpio* BMA220::get_gpioIntr()
{
return m_gpioIntr;
}