upm/src/at42qt1070/at42qt1070.cxx
Adelin Dobre 56f4dd9a92 AT42QT1070: Add string based constructor for QTouch
Signed-off-by: Adelin Dobre <adelin.dobre@rinftech.com>
Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
2019-04-04 22:18:45 -07:00

287 lines
6.3 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <math.h>
#include <iostream>
#include <string>
#include <stdexcept>
#include "at42qt1070.hpp"
using namespace upm;
using namespace std;
AT42QT1070::AT42QT1070(int bus, uint8_t address)
{
m_addr = address;
// setup our i2c link
if (!(m_i2c = mraa_i2c_init(bus))) {
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
return;
}
mraa_result_t rv;
if ((rv = mraa_i2c_address(m_i2c, m_addr)) != MRAA_SUCCESS) {
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_address() failed");
return;
}
if (readChipID() != 0x2E) {
throw std::runtime_error("Chip ID does not match the expected value (2Eh)");
}
m_buttonStates = 0;
m_calibrating = false;
m_overflow = false;
}
AT42QT1070::AT42QT1070(std::string initStr) : mraaIo(initStr)
{
mraa_io_descriptor* descs = mraaIo.getMraaDescriptors();
if(!descs->i2cs) {
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
}
else {
if( !(m_i2c = descs->i2cs[0]) ) {
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_i2c_init() failed");
}
}
if (readChipID() != 0x2E) {
throw std::runtime_error("Chip ID does not match the expected value (2Eh)");
}
m_buttonStates = 0;
m_calibrating = false;
m_overflow = false;
}
AT42QT1070::~AT42QT1070()
{
mraa_i2c_stop(m_i2c);
}
bool
AT42QT1070::writeByte(uint8_t reg, uint8_t byte)
{
mraa_result_t rv = mraa_i2c_write_byte_data(m_i2c, byte, reg);
if (rv != MRAA_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": mraa_i2c_write_byte() failed");
return false;
}
return true;
}
bool
AT42QT1070::writeWord(uint8_t reg, uint16_t word)
{
mraa_result_t rv = mraa_i2c_write_word_data(m_i2c, word, reg);
if (rv != MRAA_SUCCESS) {
throw std::runtime_error(std::string(__FUNCTION__) +
": mraa_i2c_write_word() failed");
return false;
}
return true;
}
uint8_t
AT42QT1070::readByte(uint8_t reg)
{
int x = mraa_i2c_read_byte_data(m_i2c, reg);
if (x != -1) {
return (uint8_t) x;
}
return 0;
}
uint16_t
AT42QT1070::readWord(uint8_t reg)
{
int x = mraa_i2c_read_word_data(m_i2c, reg);
if (x != -1) {
return (uint16_t) x;
}
return 0;
}
uint8_t
AT42QT1070::readChipID(void)
{
return readByte(REG_CHIPID);
}
void
AT42QT1070::updateState()
{
uint8_t stat = readByte(REG_DETSTATUS);
// if we are calibrating, don't change anything
if (stat & DET_CALIBRATE) {
m_calibrating = true;
return;
} else {
m_calibrating = false;
}
if (stat & DET_OVERFLOW)
m_overflow = true;
else
m_overflow = false;
// if a touch is occurring, read the button states
if (stat & DET_TOUCH) {
uint8_t keys = readByte(REG_KEYSTATUS);
// high bit is reserved, filter it out
m_buttonStates = keys & ~0x80;
} else {
m_buttonStates = 0;
}
}
uint8_t
AT42QT1070::getLPMode(void)
{
return readByte(REG_LP);
}
uint8_t
AT42QT1070::setLPMode(uint8_t mode)
{
writeByte(REG_LP, mode);
return getLPMode();
}
uint8_t
AT42QT1070::getAVE(uint8_t key)
{
uint8_t value, ave;
if (key > 6) {
throw std::invalid_argument("Only keys 0-6 are allowed");
}
value = readByte(REG_AVE0 + key);
ave = (value & 0xFC) >> 2;
return ave;
}
uint8_t
AT42QT1070::setAVE(uint8_t key, uint8_t ave)
{
uint8_t value;
if (key > 6) {
throw std::invalid_argument("Only keys 0-6 are allowed");
}
switch (ave) {
case 1:
case 2:
case 4:
case 8:
case 16:
case 32:
break;
default:
throw std::invalid_argument("Invalid averaging factor");
}
value = readByte(REG_AVE0 + key);
value = value & 0x03;
value = value | (ave << 2);
writeByte(REG_AVE0 + key, value);
return getAVE(key);
}
uint8_t
AT42QT1070::getAKSGroup(uint8_t key)
{
uint8_t value, aks;
if (key > 6) {
throw std::invalid_argument("Only keys 0-6 are allowed");
}
value = readByte(REG_AVE0 + key);
aks = value & 0x03;
return aks;
}
uint8_t
AT42QT1070::setAKSGroup(uint8_t key, uint8_t group)
{
uint8_t value;
if (key > 6) {
throw std::invalid_argument("Only keys 0-6 are allowed");
}
if (group > 3) {
throw std::invalid_argument("Only groups 0-3 are allowed");
}
value = readByte(REG_AVE0 + key);
value = value & 0xFC;
value = value | group;
writeByte(REG_AVE0 + key, value);
return getAKSGroup(key);
}
bool
AT42QT1070::reset()
{
// write a non-zero value to the reset register
return writeByte(REG_RESET, 0xff);
}
bool
AT42QT1070::calibrate()
{
// write a non-zero value to the calibrate register
return writeByte(REG_CALIBRATE, 0xff);
}