upm/src/ppd42ns/ppd42ns.c
Noel Eck 6d41566e93 doc: Changed <B5> to u for python doc run
The µ character (<B5>) fails the python documentation run.
Replacing with 'u'.

Signed-off-by: Noel Eck <noel.eck@intel.com>
2017-02-14 08:31:55 -08:00

196 lines
5.9 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Contributions: Rex Tsai <rex.cc.tsai@gmail.com>
* Abhishek Malik <abhishek.malik@intel.com>
* Copyright (c) 2016 Intel Corporation.
*
* Rewritten Based on original C++ driver written by:
* Author: Zion Orent <sorent@ics.com>
* Copyright (c) 2014 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <stddef.h>
#include <stdio.h>
#include <upm_math.h>
#include <upm_utilities.h>
#include "ppd42ns.h"
// Returns the amount of time it takes a pin to go from HIGH to LOW or
// from LOW to HIGH
static uint32_t ppd42ns_pulse_in(const ppd42ns_context dev,
bool high_low_value);
double pcs2ugm3 (double concentration_pcs);
ppd42ns_context ppd42ns_init(int pin)
{
ppd42ns_context dev =
(ppd42ns_context)malloc(sizeof(struct _ppd42ns_context));
if (!dev)
return NULL;
dev->gpio = NULL;
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
ppd42ns_close(dev);
return NULL;
}
// MRAA contexts...
if ( !(dev->gpio = mraa_gpio_init(pin)) )
{
printf("%s: mraa_gpio_init() failed\n",
__FUNCTION__);
ppd42ns_close(dev);
return NULL;
}
mraa_gpio_dir(dev->gpio, MRAA_GPIO_IN);
return dev;
}
void ppd42ns_close(ppd42ns_context dev)
{
assert(dev != NULL);
if (dev->gpio)
mraa_gpio_close(dev->gpio);
}
ppd42ns_dust_data ppd42ns_get_data(const ppd42ns_context dev)
{
assert(dev != NULL);
ppd42ns_dust_data data;
// in ms, 30 seconds
const int pulse_check_time = 30000;
// loop timer
upm_clock_t max_loop_time;
unsigned int low_pulse_occupancy = 0;
upm_clock_init(&max_loop_time);
do {
low_pulse_occupancy += ppd42ns_pulse_in(dev, 0);
} while (upm_elapsed_ms(&max_loop_time) < pulse_check_time);
// Store dust data
// Integer percentage 0=>100
double ratio = (float)low_pulse_occupancy
/ ((float)pulse_check_time * 10.0);
// using spec sheet curve
double concentration = (1.1 * pow(ratio,3)) - (3.8 * pow(ratio, 2))
+ (520 * ratio) + 0.62;
data.lowPulseOccupancy = low_pulse_occupancy;
data.ratio = ratio;
data.concentration = concentration;
data.ugm3 = pcs2ugm3(data.concentration);
data.aqi = upm_ugm3_to_aqi(data.ugm3);
return data;
}
// Mimicking Arduino's pulseIn function
// return how long it takes a pin to go from HIGH to LOW or LOW to HIGH
static uint32_t ppd42ns_pulse_in(const ppd42ns_context dev,
bool high_low_value)
{
assert(dev != NULL);
// we run for no more than 1 second at a time
upm_clock_t max_time;
upm_clock_t pulse_time;
uint32_t total_pulse_time = 0;
upm_clock_init(&max_time);
bool pin_level;
bool is_timing = false;
do {
pin_level = (bool)mraa_gpio_read(dev->gpio);
if (!is_timing && pin_level == high_low_value)
{
// level is desired level, but not currently timing
upm_clock_init(&pulse_time);
is_timing = true;
}
else if (is_timing && pin_level != high_low_value)
{
// we started timing, but level changed
total_pulse_time += upm_elapsed_us(&pulse_time);
is_timing = false;
}
else
{
// not timing and/or level is not equal to desired level
// so we "wait".
upm_delay_us(10);
}
} while (upm_elapsed_ms(&max_time) < 1000); // 1 second
if (is_timing)
{
// if we were still timing when the loop expired, add the
// accumulated time.
total_pulse_time += upm_elapsed_us(&pulse_time);
}
return total_pulse_time;
}
// Assumes density, shape, and size of dust to estimate mass concentration from particle count.
//
// This method was described in a 2009 paper
// Preliminary Screening System for Ambient Air Quality in Southeast Philadelphia by Uva, M., Falcone, R., McClellan, A., and Ostapowicz, E.
// https://www.yumpu.com/en/document/view/31692906/preliminary-screening-system-for-ambient-air-quality-in-southeast-
//
// This method does not use the correction factors, based on the presence of humidity and rain in the paper.
//
// convert from particles/0.01 ft3 to ug/m3
double pcs2ugm3 (double concentration_pcs)
{
double pi = 3.14159;
// All particles are spherical, with a density of 1.65E12 ug/m3
double density = 1.65 * pow (10, 12);
// The radius of a particle in the PM2.5 channel is .44 um
double r25 = 0.44 * pow (10, -6);
double vol25 = (4/3) * pi * pow (r25, 3);
double mass25 = density * vol25; // ug
double K = 3531.5; // per m^3
return concentration_pcs * K * mass25;
}