upm/src/l298/l298.cxx
Noel Eck 922e0cc26b cpp_headers: Renamed C++ headers from .h -> .hpp
To make room for UPM C and C++ sensor code to coexist, all UPM
C++ headers have been renamed from h -> hpp.  This commit contains
updates to documentation, includes, cmake collateral, examples, and
swig interface files.

    * Renamed all cxx/cpp header files which contain the string
    'copyright intel' from .h -> .hpp (if not already hpp).

    * Replaced all references to .h with .hpp in documentation,
    source files, cmake collateral, example code, and swig interface
    files.

    * Replaced cmake variable module_h with module_hpp.

    * Intentionally left upm.h since this file currently does not
    contain code (documentation only).

Signed-off-by: Noel Eck <noel.eck@intel.com>
2016-04-28 14:00:54 -07:00

346 lines
8.1 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <string>
#include <stdexcept>
#include "l298.hpp"
using namespace upm;
using namespace std;
// constructor for the DC motor(s) mode
L298::L298(int pwmA, int dir1, int dir2)
{
// No stepper in this mode
m_stepper = false;
// disable until complete
m_motor = false;
if ( !(m_pwm = mraa_pwm_init(pwmA)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_pwm_init() failed, invalid pin?");
return;
}
if ( !(m_dir1 = mraa_gpio_init(dir1)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(dir1) failed, invalid pin?");
mraa_pwm_close(m_pwm);
return;
}
mraa_gpio_dir(m_dir1, MRAA_GPIO_OUT);
if ( !(m_dir2 = mraa_gpio_init(dir2)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(dir2) failed, invalid pin?");
mraa_pwm_close(m_pwm);
mraa_gpio_close(m_dir1);
return;
}
mraa_gpio_dir(m_dir2, MRAA_GPIO_OUT);
setPeriodMS(L298_DEFAULT_PWM_PERIOD);
setDirection(DIR_NONE);
setSpeed(0);
m_motor = true;
}
// constructor for the stepper mode
L298::L298(int stepsPerRev, int en, int i1, int i2, int i3, int i4)
{
// no DC motors in this mode
m_motor = false;
// disable until complete
m_stepper = false;
m_stepsPerRev = stepsPerRev;
m_currentStep = 0;
m_stepDelay = 0;
m_stepDirection = 1; // default is forward
// init the gpio's we will need
if ( !(m_stepEnable = mraa_gpio_init(en)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(en) failed, invalid pin?");
return;
}
mraa_gpio_dir(m_stepEnable, MRAA_GPIO_OUT);
if ( !(m_stepI1 = mraa_gpio_init(i1)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(i1) failed, invalid pin?");
return;
}
mraa_gpio_dir(m_stepI1, MRAA_GPIO_OUT);
if ( !(m_stepI2 = mraa_gpio_init(i2)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(i2) failed, invalid pin?");
mraa_gpio_close(m_stepI1);
return;
}
mraa_gpio_dir(m_stepI2, MRAA_GPIO_OUT);
if ( !(m_stepI3 = mraa_gpio_init(i3)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(i3) failed, invalid pin?");
mraa_gpio_close(m_stepI1);
mraa_gpio_close(m_stepI2);
return;
}
mraa_gpio_dir(m_stepI3, MRAA_GPIO_OUT);
if ( !(m_stepI4 = mraa_gpio_init(i4)) )
{
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_gpio_init(i4) failed, invalid pin?");
mraa_gpio_close(m_stepI1);
mraa_gpio_close(m_stepI2);
mraa_gpio_close(m_stepI3);
return;
}
mraa_gpio_dir(m_stepI4, MRAA_GPIO_OUT);
m_stepper = true;
}
void L298::initClock()
{
gettimeofday(&m_startTime, NULL);
}
uint32_t L298::getMillis()
{
struct timeval elapsed, now;
uint32_t elapse;
// get current time
gettimeofday(&now, NULL);
// compute the delta since m_startTime
if( (elapsed.tv_usec = now.tv_usec - m_startTime.tv_usec) < 0 )
{
elapsed.tv_usec += 1000000;
elapsed.tv_sec = now.tv_sec - m_startTime.tv_sec - 1;
}
else
{
elapsed.tv_sec = now.tv_sec - m_startTime.tv_sec;
}
elapse = (uint32_t)((elapsed.tv_sec * 1000) + (elapsed.tv_usec / 1000));
// never return 0
if (elapse == 0)
elapse = 1;
return elapse;
}
L298::~L298()
{
if (m_stepper)
{
enable(false);
mraa_gpio_close(m_stepEnable);
mraa_gpio_close(m_stepI1);
mraa_gpio_close(m_stepI2);
mraa_gpio_close(m_stepI3);
mraa_gpio_close(m_stepI4);
}
if (m_motor)
{
setDirection(DIR_NONE);
setSpeed(0);
enable(false);
mraa_pwm_close(m_pwm);
mraa_gpio_close(m_dir1);
mraa_gpio_close(m_dir2);
}
}
void L298::setPeriodMS(int ms)
{
if (m_motor)
{
if (mraa_pwm_period_ms(m_pwm, ms) != MRAA_SUCCESS)
throw std::invalid_argument(std::string(__FUNCTION__) +
": mraa_pwm_period_ms() failed");
}
}
void L298::enable(bool enable)
{
if (m_motor)
{
mraa_pwm_enable(m_pwm, ((enable) ? 1 : 0));
}
if (m_stepper)
{
mraa_gpio_write(m_stepEnable, ((enable) ? 1 : 0));
}
}
void L298::setSpeed(int speed)
{
if (m_motor)
{
if (speed < 0)
speed = 0;
if (speed > 100)
speed = 100;
float percent = float(speed) / 100.0;
if (m_motor)
{
mraa_pwm_write(m_pwm, percent);
}
}
if (m_stepper)
{
m_stepDelay = 60 * 1000 / m_stepsPerRev / speed;
}
}
void L298::setDirection(L298_DIRECTION_T dir)
{
if (m_motor)
{
if (dir & 0x01)
mraa_gpio_write(m_dir1, 1);
else
mraa_gpio_write(m_dir1, 0);
if (dir & 0x02)
mraa_gpio_write(m_dir2, 1);
else
mraa_gpio_write(m_dir2, 0);
}
if (m_stepper)
{
switch (dir)
{
case DIR_CW:
m_stepDirection = 1;
break;
case DIR_CCW:
m_stepDirection = -1;
break;
default: // default to 1 if DIR_NONE specified
m_stepDirection = 1;
break;
}
}
}
void L298::stepperStep()
{
int step = m_currentStep % 4;
// Step I0 I1 I2 I3
// 1 1 0 1 0
// 2 0 1 1 0
// 3 0 1 0 1
// 4 1 0 0 1
switch (step)
{
case 0: // 1010
mraa_gpio_write(m_stepI1, 1);
mraa_gpio_write(m_stepI2, 0);
mraa_gpio_write(m_stepI3, 1);
mraa_gpio_write(m_stepI4, 0);
break;
case 1: // 0110
mraa_gpio_write(m_stepI1, 0);
mraa_gpio_write(m_stepI2, 1);
mraa_gpio_write(m_stepI3, 1);
mraa_gpio_write(m_stepI4, 0);
break;
case 2: //0101
mraa_gpio_write(m_stepI1, 0);
mraa_gpio_write(m_stepI2, 1);
mraa_gpio_write(m_stepI3, 0);
mraa_gpio_write(m_stepI4, 1);
break;
case 3: //1001
mraa_gpio_write(m_stepI1, 1);
mraa_gpio_write(m_stepI2, 0);
mraa_gpio_write(m_stepI3, 0);
mraa_gpio_write(m_stepI4, 1);
break;
}
}
void L298::stepperSteps(unsigned int steps)
{
while (steps > 0)
{
if (getMillis() >= m_stepDelay)
{
// reset the clock
initClock();
m_currentStep += m_stepDirection;
if (m_stepDirection == 1)
{
if (m_currentStep >= m_stepsPerRev)
m_currentStep = 0;
}
else
{
if (m_currentStep <= 0)
m_currentStep = m_stepsPerRev;
}
steps--;
stepperStep();
// cerr << "STEPNUM: " << m_currentStep << endl;
}
}
}