mirror of
https://github.com/eclipse/upm.git
synced 2025-03-17 22:17:28 +03:00

* Updated pom file generation: Generate pom files after all sensor library targets have been created - allows for dependencies * Changes for compiling on Android * Check for mraa build options: Look at symbols in mraa library to determine UPM build options (example: mraa_iio_init, mraa_firmata_init) * Add per target summary for C/C++/java/nodejs/python * Added hierarchy to fti include directory... old: #include "upm_voltage.h" new: #include "fti/upm_voltage.h" * Removed unimplemented methods from mpu9150 library and java example * Add utilities-c target for all c examples. Most of the C examples rely on the upm_delay methods. Add a dependency on the utilities-c target for all c examples. * Updated the examples/CMakeLists.txt to add dependencies passed via TARGETS to the target name parsed from the example name. Also updated the interface example names to start with 'interfaces'. * Updated src/examples/CMakeLists.txt to ALWAYS remove examples from the example_src_list (moved this from end of function to beginning). Signed-off-by: Noel Eck <noel.eck@intel.com>
710 lines
18 KiB
C++
Executable File
710 lines
18 KiB
C++
Executable File
/*
|
|
* Author: Lay, Kuan Loon <kuan.loon.lay@intel.com>
|
|
* Jon Trulson <jtrulson@ics.com>
|
|
* Copyright (c) 2016 Intel Corporation.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "l3gd20.hpp"
|
|
|
|
#define NUMBER_OF_BITS_IN_BYTE 8
|
|
#define GYRO_MIN_SAMPLES 5 /* Drop first few gyro samples after enable */
|
|
#define GYRO_MAX_ERR 0.05
|
|
#define GYRO_DS_SIZE 100
|
|
|
|
#define GYRO_DENOISE_MAX_SAMPLES 5
|
|
#define GYRO_DENOISE_NUM_FIELDS 3
|
|
|
|
using namespace upm;
|
|
using namespace std;
|
|
|
|
static float c2f(float c)
|
|
{
|
|
return (c * (9.0 / 5.0) + 32.0);
|
|
}
|
|
|
|
L3GD20::L3GD20(int device) :
|
|
m_i2c(0)
|
|
{
|
|
float gyro_scale;
|
|
char trigger[64];
|
|
|
|
if (!(m_iio = mraa_iio_init(device))) {
|
|
throw std::invalid_argument(std::string(__FUNCTION__) +
|
|
": mraa_iio_init() failed, invalid device?");
|
|
return;
|
|
}
|
|
|
|
m_scale = 1;
|
|
m_iio_device_num = device;
|
|
sprintf(trigger, "hrtimer-l3gd20-hr-dev%d", device);
|
|
|
|
if (mraa_iio_create_trigger(m_iio, trigger) != MRAA_SUCCESS)
|
|
fprintf(stderr, "Create trigger %s failed\n", trigger);
|
|
|
|
if (mraa_iio_get_mount_matrix(m_iio, "in_mount_matrix", m_mount_matrix) == MRAA_SUCCESS)
|
|
m_mount_matrix_exist = true;
|
|
else
|
|
m_mount_matrix_exist = false;
|
|
|
|
if (mraa_iio_read_float(m_iio, "in_anglvel_x_scale", &gyro_scale) == MRAA_SUCCESS)
|
|
m_scale = gyro_scale;
|
|
|
|
m_event_count = 0;
|
|
|
|
// initial calibrate data
|
|
initCalibrate();
|
|
|
|
// initial denoise data
|
|
m_filter.buff =
|
|
(float*) calloc(GYRO_DENOISE_MAX_SAMPLES, sizeof(float) * GYRO_DENOISE_NUM_FIELDS);
|
|
if (m_filter.buff == NULL) {
|
|
throw std::invalid_argument(std::string(__FUNCTION__) +
|
|
": mraa_iio_init() failed, calloc denoise data");
|
|
return;
|
|
}
|
|
m_filter.sample_size = GYRO_DENOISE_MAX_SAMPLES;
|
|
m_filter.count = 0;
|
|
m_filter.idx = 0;
|
|
}
|
|
|
|
L3GD20::L3GD20(int bus, int addr)
|
|
{
|
|
m_i2c = new mraa::I2c(bus);
|
|
|
|
if (m_i2c->address(addr) != mraa::SUCCESS)
|
|
{
|
|
throw std::runtime_error(std::string(__FUNCTION__) +
|
|
": I2c.address() failed");
|
|
}
|
|
|
|
m_scale = 1.0;
|
|
m_iio_device_num = 0;
|
|
|
|
m_gyrScale = 1.0;
|
|
m_gyrX = 0.0;
|
|
m_gyrY = 0.0;
|
|
m_gyrZ = 0.0;
|
|
m_temperature = 0.0;
|
|
|
|
m_mount_matrix_exist = false;
|
|
m_event_count = 0;
|
|
|
|
// initial calibrate data
|
|
initCalibrate();
|
|
|
|
// initial denoise data
|
|
m_filter.buff =
|
|
(float*) calloc(GYRO_DENOISE_MAX_SAMPLES,
|
|
sizeof(float) * GYRO_DENOISE_NUM_FIELDS);
|
|
|
|
if (m_filter.buff == NULL)
|
|
{
|
|
throw std::bad_alloc();
|
|
return;
|
|
}
|
|
|
|
m_filter.sample_size = GYRO_DENOISE_MAX_SAMPLES;
|
|
m_filter.count = 0;
|
|
m_filter.idx = 0;
|
|
|
|
// check ChipID
|
|
|
|
uint8_t cid = getChipID();
|
|
if (!(cid == L3GD20_DEFAULT_CHIP_ID || cid == L3GD20H_DEFAULT_CHIP_ID))
|
|
{
|
|
throw std::runtime_error(std::string(__FUNCTION__) +
|
|
": Invalid Chip ID: expected "
|
|
+ to_string(L3GD20_DEFAULT_CHIP_ID)
|
|
+ " or "
|
|
+ to_string(L3GD20H_DEFAULT_CHIP_ID)
|
|
+ ", got "
|
|
+ to_string(int(cid)));
|
|
return;
|
|
}
|
|
|
|
// set a normal power mode (with all axes enabled)
|
|
setPowerMode(POWER_NORMAL);
|
|
|
|
// enable block update mode
|
|
enableBDU(true);
|
|
|
|
// Set range to 250 degrees/sec/
|
|
setRange(FS_250);
|
|
|
|
// Set ODR to 95Hz, 25Hz cut-off
|
|
setODR(ODR_CUTOFF_95_25);
|
|
}
|
|
|
|
L3GD20::~L3GD20()
|
|
{
|
|
if (m_filter.buff) {
|
|
free(m_filter.buff);
|
|
m_filter.buff = NULL;
|
|
}
|
|
if (m_iio)
|
|
mraa_iio_close(m_iio);
|
|
}
|
|
|
|
uint8_t L3GD20::readReg(uint8_t reg)
|
|
{
|
|
return m_i2c->readReg(reg);
|
|
}
|
|
|
|
int L3GD20::readRegs(uint8_t reg, uint8_t *buffer, int len)
|
|
{
|
|
// For multi-byte reads, the reg must have the MSb set
|
|
return m_i2c->readBytesReg(reg | 0x80, buffer, len);
|
|
}
|
|
|
|
void L3GD20::writeReg(uint8_t reg, uint8_t val)
|
|
{
|
|
if (m_i2c->writeReg(reg, val) != mraa::SUCCESS)
|
|
{
|
|
throw std::runtime_error(std::string(__FUNCTION__)
|
|
+ ": I2c.writeReg() failed");
|
|
}
|
|
}
|
|
|
|
uint8_t L3GD20::getChipID()
|
|
{
|
|
return readReg(REG_WHO_AM_I);
|
|
}
|
|
|
|
void L3GD20::setPowerMode(POWER_MODES_T mode)
|
|
{
|
|
uint8_t reg = readReg(REG_CTRL_REG1);
|
|
|
|
// setting the power modes involves setting certain combinations of
|
|
// the PD, and the X, Y, and Zen bitfields.
|
|
|
|
switch(mode)
|
|
{
|
|
case POWER_DOWN:
|
|
// clear PD
|
|
reg &= ~(CTRL_REG1_PD);
|
|
break;
|
|
|
|
case POWER_SLEEP:
|
|
// set PD, clear X, Y, and Zen.
|
|
reg |= CTRL_REG1_PD;
|
|
reg &= ~(CTRL_REG1_YEN | CTRL_REG1_XEN | CTRL_REG1_ZEN);
|
|
break;
|
|
|
|
case POWER_NORMAL:
|
|
// set PD, X, Y, and Zen.
|
|
reg |= (CTRL_REG1_PD | CTRL_REG1_YEN | CTRL_REG1_XEN | CTRL_REG1_ZEN);
|
|
break;
|
|
}
|
|
|
|
writeReg(REG_CTRL_REG1, reg);
|
|
}
|
|
|
|
void L3GD20::setRange(FS_T range)
|
|
{
|
|
switch(range)
|
|
{
|
|
case FS_250:
|
|
m_gyrScale = 8.75; // milli-degrees
|
|
break;
|
|
|
|
case FS_500:
|
|
m_gyrScale = 17.50;
|
|
break;
|
|
|
|
case FS_2000:
|
|
m_gyrScale = 70.0;
|
|
break;
|
|
}
|
|
|
|
uint8_t reg = readReg(REG_CTRL_REG4) & ~(_CTRL_REG4_RESERVED_BITS);
|
|
// mask off current FS
|
|
reg &= ~(_CTRL_REG4_FS_MASK << _CTRL_REG4_FS_SHIFT);
|
|
// add our new FS
|
|
reg |= (range << _CTRL_REG4_FS_SHIFT);
|
|
|
|
writeReg(REG_CTRL_REG4, reg);
|
|
}
|
|
|
|
void L3GD20::enableBDU(bool enable)
|
|
{
|
|
uint8_t reg = readReg(REG_CTRL_REG4) & ~(_CTRL_REG4_RESERVED_BITS);
|
|
|
|
if (enable)
|
|
reg |= CTRL_REG4_BDU;
|
|
else
|
|
reg &= ~CTRL_REG4_BDU;
|
|
|
|
writeReg(REG_CTRL_REG4, reg);
|
|
}
|
|
|
|
void L3GD20::getGyroscope(float *x, float *y, float *z)
|
|
{
|
|
if (x)
|
|
*x = m_gyrX;
|
|
|
|
if (y)
|
|
*y = m_gyrY;
|
|
|
|
if (z)
|
|
*z = m_gyrZ;
|
|
}
|
|
|
|
void L3GD20::update()
|
|
{
|
|
int bufLen = 6;
|
|
uint8_t buf[bufLen];
|
|
|
|
if (readRegs(REG_OUT_X_L, buf, bufLen) != bufLen)
|
|
{
|
|
throw std::runtime_error(std::string(__FUNCTION__)
|
|
+ ": readRegs() failed to read "
|
|
+ to_string(bufLen)
|
|
+ " bytes");
|
|
}
|
|
|
|
int16_t val;
|
|
|
|
// The calibration and denoise algorithms depend on the use of
|
|
// radians rather than degrees, so we convert to radians here.
|
|
|
|
val = int16_t(buf[1] << 8 | buf[0]);
|
|
m_gyrX = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
|
|
m_gyrX = m_gyrX - m_cal_data.bias_x;
|
|
|
|
// y
|
|
val = int16_t(buf[3] << 8 | buf[2]);
|
|
m_gyrY = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
|
|
m_gyrY = m_gyrY - m_cal_data.bias_y;
|
|
|
|
// z
|
|
val = int16_t(buf[5] << 8 | buf[4]);
|
|
m_gyrZ = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
|
|
m_gyrZ = m_gyrZ - m_cal_data.bias_z;
|
|
|
|
if (m_calibrated == false)
|
|
m_calibrated = gyroCollect(m_gyrX, m_gyrY, m_gyrZ);
|
|
|
|
if (m_event_count++ >= GYRO_MIN_SAMPLES)
|
|
{
|
|
gyroDenoiseMedian(&m_gyrX, &m_gyrY, &m_gyrZ);
|
|
clampGyroReadingsToZero(&m_gyrX, &m_gyrY, &m_gyrZ);
|
|
}
|
|
|
|
// get the temperature...
|
|
uint8_t temp = readReg(REG_OUT_TEMPERATURE);
|
|
m_temperature = (float)temp;
|
|
}
|
|
|
|
float L3GD20::getTemperature(bool fahrenheit)
|
|
{
|
|
if (fahrenheit)
|
|
return c2f(m_temperature);
|
|
else
|
|
return m_temperature;
|
|
}
|
|
|
|
void L3GD20::setODR(ODR_CUTOFF_T odr)
|
|
{
|
|
uint8_t reg = readReg(REG_CTRL_REG1);
|
|
|
|
reg &= ~(_CTRL_REG1_ODR_CUTOFF_MASK << _CTRL_REG1_ODR_CUTOFF_SHIFT);
|
|
reg |= (odr << _CTRL_REG1_ODR_CUTOFF_SHIFT);
|
|
|
|
writeReg(REG_CTRL_REG1, reg);
|
|
}
|
|
|
|
uint8_t L3GD20::getStatusBits()
|
|
{
|
|
return readReg(REG_STATUS_REG);
|
|
}
|
|
|
|
|
|
void
|
|
L3GD20::installISR(void (*isr)(char*), void* arg)
|
|
{
|
|
mraa_iio_trigger_buffer(m_iio, isr, NULL);
|
|
}
|
|
|
|
int64_t
|
|
L3GD20::getChannelValue(unsigned char* input, mraa_iio_channel* chan)
|
|
{
|
|
uint64_t u64 = 0;
|
|
int i;
|
|
int storagebits = chan->bytes * NUMBER_OF_BITS_IN_BYTE;
|
|
int realbits = chan->bits_used;
|
|
int zeroed_bits = storagebits - realbits;
|
|
uint64_t sign_mask;
|
|
uint64_t value_mask;
|
|
|
|
if (!chan->lendian)
|
|
for (i = 0; i < storagebits / NUMBER_OF_BITS_IN_BYTE; i++)
|
|
u64 = (u64 << 8) | input[i];
|
|
else
|
|
for (i = storagebits / NUMBER_OF_BITS_IN_BYTE - 1; i >= 0; i--)
|
|
u64 = (u64 << 8) | input[i];
|
|
|
|
u64 = (u64 >> chan->shift) & (~0ULL >> zeroed_bits);
|
|
|
|
if (!chan->signedd)
|
|
return (int64_t) u64; /* We don't handle unsigned 64 bits int */
|
|
|
|
/* Signed integer */
|
|
|
|
switch (realbits) {
|
|
case 0 ... 1:
|
|
return 0;
|
|
|
|
case 8:
|
|
return (int64_t)(int8_t) u64;
|
|
|
|
case 16:
|
|
return (int64_t)(int16_t) u64;
|
|
|
|
case 32:
|
|
return (int64_t)(int32_t) u64;
|
|
|
|
case 64:
|
|
return (int64_t) u64;
|
|
|
|
default:
|
|
sign_mask = 1 << (realbits - 1);
|
|
value_mask = sign_mask - 1;
|
|
|
|
if (u64 & sign_mask)
|
|
return -((~u64 & value_mask) + 1); /* Negative value: return 2-complement */
|
|
else
|
|
return (int64_t) u64; /* Positive value */
|
|
}
|
|
}
|
|
|
|
bool
|
|
L3GD20::enableBuffer(int length)
|
|
{
|
|
mraa_iio_write_int(m_iio, "buffer/length", length);
|
|
// enable must be last step, else will have error in writing above config
|
|
mraa_iio_write_int(m_iio, "buffer/enable", 1);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
L3GD20::disableBuffer()
|
|
{
|
|
mraa_iio_write_int(m_iio, "buffer/enable", 0);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
L3GD20::setScale(float scale)
|
|
{
|
|
m_scale = scale;
|
|
|
|
mraa_iio_write_float(m_iio, "in_anglvel_x_scale", scale);
|
|
mraa_iio_write_float(m_iio, "in_anglvel_y_scale", scale);
|
|
mraa_iio_write_float(m_iio, "in_anglvel_z_scale", scale);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
L3GD20::setSamplingFrequency(float sampling_frequency)
|
|
{
|
|
mraa_iio_write_float(m_iio, "sampling_frequency", sampling_frequency);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
L3GD20::enable3AxisChannel()
|
|
{
|
|
char trigger[64];
|
|
sprintf(trigger, "l3gd20-hr-dev%d", m_iio_device_num);
|
|
|
|
mraa_iio_write_string(m_iio, "trigger/current_trigger", trigger);
|
|
mraa_iio_write_int(m_iio, "scan_elements/in_anglvel_x_en", 1);
|
|
mraa_iio_write_int(m_iio, "scan_elements/in_anglvel_y_en", 1);
|
|
mraa_iio_write_int(m_iio, "scan_elements/in_anglvel_z_en", 1);
|
|
|
|
// need update channel data size after enable
|
|
mraa_iio_update_channels(m_iio);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
L3GD20::extract3Axis(char* data, float* x, float* y, float* z)
|
|
{
|
|
mraa_iio_channel* channels = mraa_iio_get_channels(m_iio);
|
|
float tmp[3];
|
|
int iio_x, iio_y, iio_z;
|
|
|
|
m_event_count++;
|
|
|
|
if (m_event_count < GYRO_MIN_SAMPLES) {
|
|
/* drop the sample */
|
|
return false;
|
|
}
|
|
|
|
iio_x = getChannelValue((unsigned char*) (data + channels[0].location), &channels[0]);
|
|
iio_y = getChannelValue((unsigned char*) (data + channels[1].location), &channels[1]);
|
|
iio_z = getChannelValue((unsigned char*) (data + channels[2].location), &channels[2]);
|
|
|
|
// Raw data is x, y, z axis angular velocity. Units after application of scale are radians per
|
|
// second
|
|
*x = (iio_x * m_scale);
|
|
*y = (iio_y * m_scale);
|
|
*z = (iio_z * m_scale);
|
|
|
|
if (m_mount_matrix_exist) {
|
|
tmp[0] = *x * m_mount_matrix[0] + *y * m_mount_matrix[1] + *z * m_mount_matrix[2];
|
|
tmp[1] = *x * m_mount_matrix[3] + *y * m_mount_matrix[4] + *z * m_mount_matrix[5];
|
|
tmp[2] = *x * m_mount_matrix[6] + *y * m_mount_matrix[7] + *z * m_mount_matrix[8];
|
|
|
|
*x = tmp[0];
|
|
*y = tmp[1];
|
|
*z = tmp[2];
|
|
}
|
|
|
|
/* Attempt gyroscope calibration if we have not reached this state */
|
|
if (m_calibrated == false)
|
|
m_calibrated = gyroCollect(*x, *y, *z);
|
|
|
|
*x = *x - m_cal_data.bias_x;
|
|
*y = *y - m_cal_data.bias_y;
|
|
*z = *z - m_cal_data.bias_z;
|
|
|
|
|
|
gyroDenoiseMedian(x, y, z);
|
|
clampGyroReadingsToZero(x, y, z);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
L3GD20::initCalibrate()
|
|
{
|
|
m_calibrated = false;
|
|
m_cal_data.count = 0;
|
|
m_cal_data.bias_x = m_cal_data.bias_y = m_cal_data.bias_z = 0;
|
|
m_cal_data.min_x = m_cal_data.min_y = m_cal_data.min_z = 1.0;
|
|
m_cal_data.max_x = m_cal_data.max_y = m_cal_data.max_z = -1.0;
|
|
}
|
|
|
|
bool
|
|
L3GD20::getCalibratedStatus()
|
|
{
|
|
return m_calibrated;
|
|
}
|
|
|
|
void
|
|
L3GD20::getCalibratedData(float* bias_x, float* bias_y, float* bias_z)
|
|
{
|
|
*bias_x = m_cal_data.bias_x;
|
|
*bias_y = m_cal_data.bias_y;
|
|
*bias_z = m_cal_data.bias_z;
|
|
}
|
|
|
|
void
|
|
L3GD20::loadCalibratedData(float bias_x, float bias_y, float bias_z)
|
|
{
|
|
m_calibrated = true;
|
|
m_cal_data.bias_x = bias_x;
|
|
m_cal_data.bias_y = bias_y;
|
|
m_cal_data.bias_z = bias_z;
|
|
}
|
|
|
|
bool
|
|
L3GD20::gyroCollect(float x, float y, float z)
|
|
{
|
|
/* Analyze gyroscope data */
|
|
|
|
if (fabs(x) >= 1 || fabs(y) >= 1 || fabs(z) >= 1) {
|
|
/* We're supposed to be standing still ; start over */
|
|
m_cal_data.count = 0;
|
|
m_cal_data.bias_x = m_cal_data.bias_y = m_cal_data.bias_z = 0;
|
|
m_cal_data.min_x = m_cal_data.min_y = m_cal_data.min_z = 1.0;
|
|
m_cal_data.max_x = m_cal_data.max_y = m_cal_data.max_z = -1.0;
|
|
|
|
return false; /* Uncalibrated */
|
|
}
|
|
|
|
/* Thanks to https://github.com/01org/android-iio-sensors-hal for calibration algorithm */
|
|
if (m_cal_data.count < GYRO_DS_SIZE) {
|
|
if (x < m_cal_data.min_x)
|
|
m_cal_data.min_x = x;
|
|
|
|
if (y < m_cal_data.min_y)
|
|
m_cal_data.min_y = y;
|
|
|
|
if (z < m_cal_data.min_z)
|
|
m_cal_data.min_z = z;
|
|
|
|
if (x > m_cal_data.max_x)
|
|
m_cal_data.max_x = x;
|
|
|
|
if (y > m_cal_data.max_y)
|
|
m_cal_data.max_y = y;
|
|
|
|
if (z > m_cal_data.max_z)
|
|
m_cal_data.max_z = z;
|
|
|
|
if (fabs(m_cal_data.max_x - m_cal_data.min_x) <= GYRO_MAX_ERR &&
|
|
fabs(m_cal_data.max_y - m_cal_data.min_y) <= GYRO_MAX_ERR &&
|
|
fabs(m_cal_data.max_z - m_cal_data.min_z) <= GYRO_MAX_ERR)
|
|
m_cal_data.count++; /* One more conformant sample */
|
|
else {
|
|
/* Out of spec sample ; start over */
|
|
m_calibrated = false;
|
|
m_cal_data.count = 0;
|
|
m_cal_data.bias_x = m_cal_data.bias_y = m_cal_data.bias_z = 0;
|
|
m_cal_data.min_x = m_cal_data.min_y = m_cal_data.min_z = 1.0;
|
|
m_cal_data.max_x = m_cal_data.max_y = m_cal_data.max_z = -1.0;
|
|
}
|
|
|
|
return false; /* Still uncalibrated */
|
|
}
|
|
|
|
/* We got enough stable samples to estimate gyroscope bias */
|
|
m_cal_data.bias_x = (m_cal_data.max_x + m_cal_data.min_x) / 2;
|
|
m_cal_data.bias_y = (m_cal_data.max_y + m_cal_data.min_y) / 2;
|
|
m_cal_data.bias_z = (m_cal_data.max_z + m_cal_data.min_z) / 2;
|
|
|
|
return true; /* Calibrated! */
|
|
}
|
|
|
|
void
|
|
L3GD20::gyroDenoiseMedian(float* x, float* y, float* z)
|
|
{
|
|
/* Thanks to https://github.com/01org/android-iio-sensors-hal for denoise algorithm */
|
|
unsigned int offset;
|
|
|
|
/* If we are at event count 1 reset the indices */
|
|
if (m_event_count == 1) {
|
|
m_filter.count = 0;
|
|
m_filter.idx = 0;
|
|
}
|
|
|
|
if (m_filter.count < m_filter.sample_size)
|
|
m_filter.count++;
|
|
|
|
offset = 0;
|
|
m_filter.buff[offset + m_filter.idx] = *x;
|
|
*x = median(m_filter.buff + offset, m_filter.count);
|
|
|
|
offset = m_filter.sample_size * 1;
|
|
m_filter.buff[offset + m_filter.idx] = *y;
|
|
*y = median(m_filter.buff + offset, m_filter.count);
|
|
|
|
offset = m_filter.sample_size * 2;
|
|
m_filter.buff[offset + m_filter.idx] = *z;
|
|
*z = median(m_filter.buff + offset, m_filter.count);
|
|
|
|
m_filter.idx = (m_filter.idx + 1) % m_filter.sample_size;
|
|
}
|
|
|
|
float
|
|
L3GD20::median(float* queue, unsigned int size)
|
|
{
|
|
/* http://en.wikipedia.org/wiki/Quickselect */
|
|
|
|
unsigned int left = 0;
|
|
unsigned int right = size - 1;
|
|
unsigned int pivot_index;
|
|
unsigned int median_index = (right / 2);
|
|
float temp[size];
|
|
|
|
memcpy(temp, queue, size * sizeof(float));
|
|
|
|
/* If the list has only one element return it */
|
|
if (left == right)
|
|
return temp[left];
|
|
|
|
while (left < right) {
|
|
pivot_index = (left + right) / 2;
|
|
pivot_index = partition(temp, left, right, pivot_index);
|
|
if (pivot_index == median_index)
|
|
return temp[median_index];
|
|
else if (pivot_index > median_index)
|
|
right = pivot_index - 1;
|
|
else
|
|
left = pivot_index + 1;
|
|
}
|
|
|
|
return temp[left];
|
|
}
|
|
|
|
unsigned int
|
|
L3GD20::partition(float* list, unsigned int left, unsigned int right, unsigned int pivot_index)
|
|
{
|
|
unsigned int i;
|
|
unsigned int store_index = left;
|
|
float aux;
|
|
float pivot_value = list[pivot_index];
|
|
|
|
/* Swap list[pivotIndex] and list[right] */
|
|
aux = list[pivot_index];
|
|
list[pivot_index] = list[right];
|
|
list[right] = aux;
|
|
|
|
for (i = left; i < right; i++) {
|
|
if (list[i] < pivot_value) {
|
|
/* Swap list[store_index] and list[i] */
|
|
aux = list[store_index];
|
|
list[store_index] = list[i];
|
|
list[i] = aux;
|
|
store_index++;
|
|
}
|
|
}
|
|
|
|
/* Swap list[right] and list[store_index] */
|
|
aux = list[right];
|
|
list[right] = list[store_index];
|
|
list[store_index] = aux;
|
|
return store_index;
|
|
}
|
|
|
|
void
|
|
L3GD20::clampGyroReadingsToZero(float* x, float* y, float* z)
|
|
{
|
|
float near_zero;
|
|
|
|
/* If we're calibrated, don't filter out as much */
|
|
if (m_calibrated)
|
|
near_zero = 0.02; /* rad/s */
|
|
else
|
|
near_zero = 0.1;
|
|
|
|
/* If motion on all axes is small enough */
|
|
if (fabs(*x) < near_zero && fabs(*y) < near_zero && fabs(*z) < near_zero) {
|
|
/*
|
|
* Report that we're not moving at all... but not exactly zero as composite sensors
|
|
* (orientation, rotation vector) don't
|
|
* seem to react very well to it.
|
|
*/
|
|
|
|
*x *= 0.000001;
|
|
*y *= 0.000001;
|
|
*z *= 0.000001;
|
|
}
|
|
}
|