upm/src/mpu9150/mpu60x0.hpp
Noel Eck 922e0cc26b cpp_headers: Renamed C++ headers from .h -> .hpp
To make room for UPM C and C++ sensor code to coexist, all UPM
C++ headers have been renamed from h -> hpp.  This commit contains
updates to documentation, includes, cmake collateral, examples, and
swig interface files.

    * Renamed all cxx/cpp header files which contain the string
    'copyright intel' from .h -> .hpp (if not already hpp).

    * Replaced all references to .h with .hpp in documentation,
    source files, cmake collateral, example code, and swig interface
    files.

    * Replaced cmake variable module_h with module_hpp.

    * Intentionally left upm.h since this file currently does not
    contain code (documentation only).

Signed-off-by: Noel Eck <noel.eck@intel.com>
2016-04-28 14:00:54 -07:00

959 lines
29 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <string>
#include <mraa/common.hpp>
#include <mraa/i2c.hpp>
#include <mraa/gpio.hpp>
#define MPU60X0_I2C_BUS 0
#define MPU60X0_DEFAULT_I2C_ADDR 0x68
namespace upm {
/**
* @library mpu9150
* @sensor mpu60x0
* @comname MPU60X0 3-axis Gyroscope and 3-axis Accelerometer
* @type accelerometer compass
* @man seeed
* @con i2c gpio
*
* @brief API for the MPU60X0 3-axis Gyroscope and 3-axis Accelerometer
*
* The MPU60X0 devices provide the worlds first integrated 6-axis
* motion processor solution that eliminates the package-level
* gyroscope and accelerometer cross-axis misalignment associated
* with discrete solutions. The devices combine a 3-axis gyroscope
* and a 3-axis accelerometer on the same silicon die.
*
* While not all of the functionality of this device is supported
* initially, methods and register definitions are provided that
* should allow an end user to implement whatever features are
* required.
*
* @image html mpu60x0.jpg
* @snippet mpu60x0.cxx Interesting
*/
class MPU60X0 {
public:
// NOTE: These enums were composed from both the mpu6050 and
// mpu9150 register maps, since this driver was written using an
// mpu9150, but we'd like this module to be usable with a
// standalone mpu60x0.
//
// Registers and bitfields marked with an '*' in their
// comment indicate registers or bit fields present in the mpu9150
// register map, but not in the original mpu6050 register map. If
// using this module on a standalone mpu6050, you should avoid
// using those registers or bitfields marked with an *.
/**
* MPU60X0 registers
*/
typedef enum {
REG_SELF_TEST_X = 0x0d,
REG_SELF_TEST_Y = 0x0e,
REG_SELF_TEST_Z = 0x0f,
REG_SELF_TEST_A = 0x10,
REG_SMPLRT_DIV = 0x19, // sample rate divider
REG_CONFIG = 0x1a,
REG_GYRO_CONFIG = 0x1b,
REG_ACCEL_CONFIG = 0x1c,
REG_FF_THR = 0x1d, // *freefall threshold
REG_FF_DUR = 0x1e, // *freefall duration
REG_MOT_THR = 0x1f, // motion threshold
REG_MOT_DUR = 0x20, // *motion duration
REG_ZRMOT_THR = 0x21, // *zero motion threshhold
REG_ZRMOT_DUR = 0x22, // *zero motion duration
REG_FIFO_EN = 0x23,
REG_I2C_MST_CTRL = 0x24, // I2C master control
REG_I2C_SLV0_ADDR = 0x25, // I2C slave 0
REG_I2C_SLV0_REG = 0x26,
REG_I2C_SLV0_CTRL = 0x27,
REG_I2C_SLV1_ADDR = 0x28, // I2C slave 1
REG_I2C_SLV1_REG = 0x29,
REG_I2C_SLV1_CTRL = 0x2a,
REG_I2C_SLV2_ADDR = 0x2b, // I2C slave 2
REG_I2C_SLV2_REG = 0x2c,
REG_I2C_SLV2_CTRL = 0x2d,
REG_I2C_SLV3_ADDR = 0x2e, // I2C slave 3
REG_I2C_SLV3_REG = 0x2f,
REG_I2C_SLV3_CTRL = 0x30,
REG_I2C_SLV4_ADDR = 0x31, // I2C slave 4
REG_I2C_SLV4_REG = 0x32,
REG_I2C_SLV4_DO = 0x33,
REG_I2C_SLV4_CTRL = 0x34,
REG_I2C_SLV4_DI = 0x35,
REG_I2C_MST_STATUS = 0x36, // I2C master status
REG_INT_PIN_CFG = 0x37, // interrupt pin config/i2c bypass
REG_INT_ENABLE = 0x38,
// 0x39 reserved
REG_INT_STATUS = 0x3a, // interrupt status
REG_ACCEL_XOUT_H = 0x3b, // accelerometer outputs
REG_ACCEL_XOUT_L = 0x3c,
REG_ACCEL_YOUT_H = 0x3d,
REG_ACCEL_YOUT_L = 0x3e,
REG_ACCEL_ZOUT_H = 0x3f,
REG_ACCEL_ZOUT_L = 0x40,
REG_TEMP_OUT_H = 0x41, // temperature output
REG_TEMP_OUT_L = 0x42,
REG_GYRO_XOUT_H = 0x43, // gyro outputs
REG_GYRO_XOUT_L = 0x44,
REG_GYRO_YOUT_H = 0x45,
REG_GYRO_YOUT_L = 0x46,
REG_GYRO_ZOUT_H = 0x47,
REG_GYRO_ZOUT_L = 0x48,
REG_EXT_SENS_DATA_00 = 0x49, // external sensor data
REG_EXT_SENS_DATA_01 = 0x4a,
REG_EXT_SENS_DATA_02 = 0x4b,
REG_EXT_SENS_DATA_03 = 0x4c,
REG_EXT_SENS_DATA_04 = 0x4d,
REG_EXT_SENS_DATA_05 = 0x4e,
REG_EXT_SENS_DATA_06 = 0x4f,
REG_EXT_SENS_DATA_07 = 0x50,
REG_EXT_SENS_DATA_08 = 0x51,
REG_EXT_SENS_DATA_09 = 0x52,
REG_EXT_SENS_DATA_10 = 0x53,
REG_EXT_SENS_DATA_11 = 0x54,
REG_EXT_SENS_DATA_12 = 0x55,
REG_EXT_SENS_DATA_13 = 0x56,
REG_EXT_SENS_DATA_14 = 0x57,
REG_EXT_SENS_DATA_15 = 0x58,
REG_EXT_SENS_DATA_16 = 0x59,
REG_EXT_SENS_DATA_17 = 0x5a,
REG_EXT_SENS_DATA_18 = 0x5b,
REG_EXT_SENS_DATA_19 = 0x5c,
REG_EXT_SENS_DATA_20 = 0x5d,
REG_EXT_SENS_DATA_21 = 0x5e,
REG_EXT_SENS_DATA_22 = 0x5f,
REG_EXT_SENS_DATA_23 = 0x60,
REG_MOT_DETECT_STATUS = 0x61, // *
// 0x62 reserved
REG_I2C_SLV0_DO = 0x63, // I2C slave data outs
REG_I2C_SLV1_DO = 0x64,
REG_I2C_SLV2_DO = 0x65,
REG_I2C_SLV3_DO = 0x66,
REG_I2C_MST_DELAY_CTRL = 0x67,
REG_SIGNAL_PATH_RESET = 0x68, // signal path resets
REG_MOT_DETECT_CTRL = 0x69,
REG_USER_CTRL = 0x6a,
REG_PWR_MGMT_1 = 0x6b, // power management
REG_PWR_MGMT_2 = 0x6c,
// 0x6d-0x71 reserved
REG_FIFO_COUNTH = 0x72,
REG_FIFO_COUNTL = 0x73,
REG_FIFO_R_W = 0x74,
REG_WHO_AM_I = 0x75
} MPU60X0_REG_T;
/**
* CONFIG bits
*/
typedef enum {
CONFIG_DLPF_CFG0 = 0x01, // digital low-pass filter config
CONFIG_DLPF_CFG1 = 0x02,
CONFIG_DLPF_CFG2 = 0x04,
_CONFIG_DLPF_SHIFT = 0,
_CONFIG_DLPF_MASK = 7,
CONFIG_EXT_SYNC_SET0 = 0x08, // FSYNC pin config
CONFIG_EXT_SYNC_SET1 = 0x10,
CONFIG_EXT_SYNC_SET2 = 0x20,
_CONFIG_EXT_SYNC_SET_SHIFT = 3,
_CONFIG_EXT_SYNC_SET_MASK = 7
} CONFIG_BITS_T;
/**
* CONFIG DLPF_CFG values
*/
typedef enum {
DLPF_260_256 = 0, // accel/gyro bandwidth (Hz)
DLPF_184_188 = 1,
DLPF_94_98 = 2,
DLPF_44_42 = 3,
DLPF_21_20 = 4,
DLPF_10_10 = 5,
DLPF_5_5 = 6,
DLPF_RESERVED = 7
} DLPF_CFG_T;
/**
* CONFIG EXT_SYNC_SET values
*/
typedef enum {
EXT_SYNC_DISABLED = 0,
EXT_SYNC_TEMP_OUT = 1,
EXT_SYNC_GYRO_XOUT = 2,
EXT_SYNC_GYRO_YOUT = 3,
EXT_SYNC_GYRO_ZOUT = 4,
EXT_SYNC_ACCEL_XOUT = 5,
EXT_SYNC_ACCEL_YOUT = 6,
EXT_SYNC_ACCEL_ZOUT = 7
} EXT_SYNC_SET_T;
/**
* GYRO_CONFIG bits
*/
typedef enum {
// 0x01-0x04 reserved
FS_SEL0 = 0x08, // gyro full scale range
FS_SEL1 = 0x10,
_FS_SEL_SHIFT = 3,
_FS_SEL_MASK = 3,
ZG_ST = 0x20, // gyro self test bits
YG_ST = 0x40,
XG_ST = 0x80
} GRYO_CONFIG_BITS_T;
/**
* GYRO FS_SEL values
*/
typedef enum {
FS_250 = 0, // 250 deg/s, 131 LSB deg/s
FS_500 = 1, // 500 deg/s, 65.5 LSB deg/s
FS_1000 = 2, // 1000 deg/s, 32.8 LSB deg/s
FS_2000 = 3 // 2000 deg/s, 16.4 LSB deg/s
} FS_SEL_T;
/**
* ACCEL_CONFIG bits
*/
typedef enum {
// 0x01-0x04 reserved
AFS_SEL0 = 0x08, // accel full scale range
AFS_SEL1 = 0x10,
_AFS_SEL_SHIFT = 3,
_AFS_SEL_MASK = 3,
ZA_ST = 0x20, // gyro self test bits
YA_ST = 0x40,
XA_ST = 0x80
} ACCEL_CONFIG_BITS_T;
/**
* ACCEL AFS_SEL (full scaling) values
*/
typedef enum {
AFS_2 = 0, // 2g, 16384 LSB/g
AFS_4 = 1, // 4g, 8192 LSB/g
AFS_8 = 2, // 8g, 4096 LSB/g
AFS_16 = 3 // 16g, 2048 LSB/g
} AFS_SEL_T;
/**
* REG_FIFO_EN bits
*/
typedef enum {
SLV0_FIFO_EN = 0x01,
SLV1_FIFO_EN = 0x02,
SLV2_FIFO_EN = 0x04,
ACCEL_FIFO_EN = 0x08,
ZG_FIFO_EN = 0x10,
YG_FIFO_EN = 0x20,
XG_FIFO_EN = 0x40,
TEMP_FIFO_EN = 0x80
} FIFO_EN_BITS_T;
/**
* REG_I2C_MST_CTRL bits
*/
typedef enum {
I2C_MST_CLK0 = 0x01,
I2C_MST_CLK1 = 0x02,
I2C_MST_CLK2 = 0x04,
I2C_MST_CLK3 = 0x08,
_I2C_MST_CLK_SHIFT = 0,
_I2C_MST_CLK_MASK = 15,
I2C_MST_P_NSR = 0x10,
SLV_3_FIFO_EN = 0x20,
WAIT_FOR_ES = 0x40,
MULT_MST_EN = 0x80
} I2C_MST_CTRL_BITS_T;
/**
* I2C_MST_CLK values
*/
typedef enum {
MST_CLK_348 = 0, // 348Khz
MST_CLK_333 = 1,
MST_CLK_320 = 2,
MST_CLK_308 = 3,
MST_CLK_296 = 4,
MST_CLK_286 = 5,
MST_CLK_276 = 6,
MST_CLK_267 = 7,
MST_CLK_258 = 8,
MST_CLK_500 = 9,
MST_CLK_471 = 10,
MST_CLK_444 = 11,
MST_CLK_421 = 12,
MST_CLK_400 = 13,
MST_CLK_381 = 14,
MST_CLK_364 = 15
} I2C_MST_CLK_T;
/**
* REG_I2C SLV0-SLV4 _ADDR bits
*/
typedef enum {
I2C_SLV_ADDR0 = 0x01,
I2C_SLV_ADDR1 = 0x02,
I2C_SLV_ADDR2 = 0x04,
I2C_SLV_ADDR3 = 0x08,
I2C_SLV_ADDR4 = 0x10,
I2C_SLV_ADDR5 = 0x20,
I2C_SLV_ADDR6 = 0x40,
_I2C_SLV_ADDR_SHIFT = 0,
_I2C_SLV_ADDR_MASK = 127,
I2C_SLV_RW = 0x80
} I2C_SLV_ADDR_BITS_T;
/**
* REG_I2C SLV0-SLV3 _CTRL bits
*/
typedef enum {
I2C_SLV_LEN0 = 0x01,
I2C_SLV_LEN1 = 0x02,
I2C_SLV_LEN2 = 0x04,
I2C_SLV_LEN3 = 0x08,
_I2C_SLV_LEN_SHIFT = 0,
_I2C_SLV_LEN_MASK = 15,
I2C_SLV_GRP = 0x10,
I2C_SLV_REG_DIS = 0x20,
I2C_SLV_BYTE_SW = 0x40,
I2C_SLV_EN = 0x80
} I2C_SLV_CTRL_BITS_T;
/**
* REG_I2C_SLV4_CTRL bits, these are different from the SLV0-SLV3
* CRTL bits.
*
* MST_DLY is not enumerated in the register map. It configures
* the reduced access rate of i2c slaves relative to the sample
* rate. When a slaves access rate is decreased relative to the
* Sample Rate, the slave is accessed every
* 1 / (1 + I2C_MST_DLY) samples
*/
typedef enum {
I2C_MST_DLY0 = 0x01,
I2C_MST_DLY1 = 0x02,
I2C_MST_DLY2 = 0x04,
I2C_MST_DLY3 = 0x08,
I2C_MST_DLY4 = 0x10,
_I2C_MST_DLY_SHIFT = 0,
_I2C_MST_DLY_MASK = 31,
I2C_SLV4_REG_DIS = 0x20,
I2C_SLV4_INT_EN = 0x40,
I2C_SLV4_EN = 0x80
} I2C_SLV4_CTRL_BITS_T;
/**
* REG_I2C_MST_STATUS bits
*/
typedef enum {
I2C_SLV0_NACK = 0x01,
I2C_SLV1_NACK = 0x02,
I2C_SLV2_NACK = 0x04,
I2C_SLV3_NACK = 0x08,
I2C_SLV4_NACK = 0x10,
I2C_LOST_ARB = 0x20,
I2C_SLV4_DONE = 0x40,
PASS_THROUGH = 0x80
} I2C_MST_STATUS_BITS_T;
/**
* REG_INT_PIN_CFG bits
*/
typedef enum {
CLKOUT_EN = 0x01, // *
I2C_BYPASS_ENABLE = 0x02,
FSYNC_INT_EN = 0x04,
FSYNC_INT_LEVEL = 0x08,
INT_RD_CLEAR = 0x10,
LATCH_INT_EN = 0x20,
INT_OPEN = 0x40,
INT_LEVEL = 0x80
} INT_PIN_CFG_BITS_T;
/**
* REG_INT_ENABLE bits
*/
typedef enum {
DATA_RDY_EN = 0x01, // *
// 0x02, 0x04 reserved
I2C_MST_INT_EN = 0x08,
FIFO_OFLOW_EN = 0x10,
ZMOT_EN = 0x20, // *zero motion
MOT_EN = 0x40,
FF_EN = 0x80 // *freefall
} INT_ENABLE_BITS_T;
/**
* REG_INT_STATUS bits
*/
typedef enum {
DATA_RDY_INT = 0x01,
// 0x02, 0x04 reserved
I2C_MST_INT = 0x08,
FIFO_OFLOW_INT = 0x10,
ZMOT_INT = 0x20, // *zero motion
MOT_INT = 0x40,
FF_INT = 0x80 // *freefall
} INT_STATUS_BITS_T;
/**
* REG_MOT_DETECT_STATUS bits (mpu9150 only)
*/
typedef enum {
MOT_ZRMOT = 0x01, // *
// 0x02 reserved
MOT_ZPOS = 0x04, // *
MOT_ZNEG = 0x08, // *
MOT_YPOS = 0x10, // *
MOT_YNEG = 0x20, // *
MOT_XPOS = 0x40, // *
MOT_XNEG = 0x80, // *
} MOT_DETECT_STATUS_BITS_T;
/**
* REG_MST_DELAY_CTRL bits
*/
typedef enum {
I2C_SLV0_DLY_EN = 0x01,
I2C_SLV1_DLY_EN = 0x02,
I2C_SLV2_DLY_EN = 0x04,
I2C_SLV3_DLY_EN = 0x08,
I2C_SLV4_DLY_EN = 0x10,
// 0x20, 0x40, reserved
DELAY_ES_SHADOW = 0x80
} MST_DELAY_CTRL_BITS_T;
/**
* REG_SIGNAL_PATH_RESET bits
*/
typedef enum {
TEMP_RESET = 0x01,
ACCEL_RESET = 0x02,
GYRO_RESET = 0x04
// 0x08-0x80 reserved
} SIGNAL_PATH_RESET_BITS_T;
/**
* REG_MOT_DETECT_CTRL bits
*/
typedef enum {
MOT_COUNT0 = 0x01, // *
MOT_COUNT1 = 0x02, // *
_MOT_COUNT_SHIFT = 0,
_MOT_COUNT_MASK = 3,
FF_COUNT0 = 0x04, // *
FF_COUNT1 = 0x08, // *
_FF_COUNT_SHIFT = 2,
_FF_COUNT_MASK = 3,
ACCEL_ON_DELAY0 = 0x10,
ACCEL_ON_DELAY1 = 0x20,
_ACCEL_ON_DELAY_SHIFT = 4,
_ACCEL_ON_DELAY_MASK = 3
// 0x40,0x80 reserved
} MOT_DETECT_CTRL_BITS_T;
/**
* MOT_COUNT or FF_COUNT values (mpu9150 only)
*/
typedef enum {
COUNT_0 = 0, // Reset
COUNT_1 = 1, // counter decrement 1
COUNT_2 = 2, // counter decrement 2
COUNT_4 = 3 // counter decrement 4
} MOT_FF_COUNT_T;
/**
* ACCEL_ON_DELAY values
*/
typedef enum {
ON_DELAY_0 = 0, // no delay
ON_DELAY_1 = 1, // add 1ms
ON_DELAY_2 = 2, // add 2ms
ON_DELAY_3 = 3 // add 3ms
} ACCEL_ON_DELAY_T;
/**
* REG_USER_CTRL bits
*/
typedef enum {
SIG_COND_RESET = 0x01,
I2C_MST_RESET = 0x02,
FIFO_RESET = 0x04,
// 0x08 reserved
I2C_IF_DIS = 0x10,
I2C_MST_EN = 0x20,
FIFO_EN = 0x40
/// 0x80 reserved
} USER_CTRL_BITS_T;
/**
* REG_PWR_MGMT_1 bits
*/
typedef enum {
CLKSEL0 = 0x01,
CLKSEL1 = 0x02,
CLKSEL2 = 0x04,
_CLKSEL_SHIFT = 0,
_CLKSEL_MASK = 7,
TEMP_DIS = 0x08,
// 0x10 reserved
PWR_CYCLE = 0x20,
PWR_SLEEP = 0x40,
DEVICE_RESET = 0x80
} PWR_MGMT_1_BITS_T;
/**
* CLKSEL values
*/
typedef enum {
INT_8MHZ = 0, // internal 8Mhz osc
PLL_XG = 1, // PLL X axis gyro
PLL_YG = 2, // PLL Y axis gyro
PLL_ZG = 3, // PLL Z axis gyro
PLL_EXT_32KHZ = 4, // PLL with external 32.768Khz ref
PLL_EXT_19MHZ = 5, // PLL with external 19.2Mhz ref
// 6 - reserved
CLK_STOP = 7 // stops clk
} CLKSEL_T;
/**
* REG_PWR_MGMT_2 bits
*/
typedef enum {
STBY_ZG = 0x01,
STBY_YG = 0x02,
STBY_XG = 0x04,
STBY_ZA = 0x08,
STBY_YA = 0x10,
STBY_XA = 0x20,
LP_WAKE_CTRL0 = 0x40,
LP_WAKE_CTRL1 = 0x80,
_LP_WAKE_CTRL_SHIFT = 6,
_LP_WAKE_CTRL_MASK = 3
} PWR_MGMT_2_BITS_T;
/**
* LP_WAKE_CTRL values
*/
typedef enum {
LP_WAKE_1_25 = 0, // wakeup feq: 1.25hz
LP_WAKE_5 = 1, // 5hz
LP_WAKE_20 = 2, // 20hz
LP_WAKE_40 = 3, // 40hz
} LP_WAKE_CRTL_T;
/**
* mpu60x0 constructor
*
* @param bus i2c bus to use
* @param address the address for this device
*/
MPU60X0(int bus=MPU60X0_I2C_BUS, uint8_t address=MPU60X0_DEFAULT_I2C_ADDR);
/**
* MPU60X0 Destructor
*/
~MPU60X0();
/**
* set up initial values and start operation
*
* @return true if successful
*/
bool init();
/**
* take a measurement and store the current sensor values
* internally. Note, these user facing registers are only updated
* from the internal device sensor values when the i2c serial
* traffic is 'idle'. So, if you are reading the values too fast,
* the bus may never be idle, and you will just end up reading
* the same values over and over.
*
* Unfortunately, it is is not clear how long 'idle' actually
* means, so if you see this behavior, reduce the rate at which
* you are calling update().
*
*/
void update();
/**
* read a register
*
* @param reg the register to read
* @return the value of the register
*/
uint8_t readReg(uint8_t reg);
/**
* read contiguous refister into a buffer
*
* @param reg the register to start reading at
* @param buffer the buffer to store the results
* @param len the number of registers to read
* @return the value of the register
*/
void readRegs(uint8_t reg, uint8_t *buffer, int len);
/**
* write to a register
*
* @param reg the register to write to
* @param val the value to write
* @return true if successful, false otherwise
*/
bool writeReg(uint8_t reg, uint8_t val);
/**
* enable or disable device sleep
*
* @param enable true to put device to sleep, false to wake up
* @return true if successful, false otherwise
*/
bool setSleep(bool enable);
/**
* specify the clock source for the device to use
*
* @param clk one of the CLKSEL_T values
* @return true if successful, false otherwise
*/
bool setClockSource(CLKSEL_T clk);
/**
* set the scaling mode of the gyroscope
*
* @param scale one of the FS_SEL_T values
* @return true if successful, false otherwise
*/
bool setGyroscopeScale(FS_SEL_T scale);
/**
* set the scaling mode of the accelerometer
*
* @param scale one of the AFS_SEL_T values
* @return true if successful, false otherwise
*/
bool setAccelerometerScale(AFS_SEL_T scale);
/**
* set the Low Pass Digital filter. This enables filtering (if
* non-0) of the accelerometer and gyro outputs.
*
* @param scale one of the DLPF_CFG_T values
* @return true if successful, false otherwise
*/
bool setDigitalLowPassFilter(DLPF_CFG_T dlp);
/**
* set the sample rate divider. This register specifies the
* divider from the gyro output rate used to generate the Sample
* Rate. The sensor registor output, FIFO output, DMP sampling
* and motion detection are all based on the Sample Rate.
*
* The Sample Rate is generated by dividing the gyro output rate
* by this register:
*
* Sample Rate = Gyro output rate / (1 + sample rate divider).
*
* The Gyro output rate is 8Khz when the Digital Low Pass Filter
* (DLPF) is 0 or 7 (DLPF_260_256 or DLPF_RESERVED), and 1Khz
* otherwise.
*
* @param scale one of the DLPF_CFG_T values
* @return true if successful, false otherwise
*/
bool setSampleRateDivider(uint8_t div);
/**
* get the current Sample Rate divider
*
* @return the current sample rate divider
*/
uint8_t getSampleRateDivider();
/**
* get the accelerometer values
*
* @param x the returned x value, if arg is non-NULL
* @param y the returned y value, if arg is non-NULL
* @param z the returned z value, if arg is non-NULL
* @return true if successful, false otherwise
*/
void getAccelerometer(float *x, float *y, float *z);
/**
* get the gyroscope values
*
* @param x the returned x value, if arg is non-NULL
* @param y the returned y value, if arg is non-NULL
* @param z the returned z value, if arg is non-NULL
* @return true if successful, false otherwise
*/
void getGyroscope(float *x, float *y, float *z);
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
/**
* get the accelerometer values
*
* @return Array containing X, Y, Z accelerometer values
*/
float *getAccelerometer();
/**
* get the gyroscope values
*
* @return Array containing X, Y, Z gyroscope values
*/
float *getGyroscope();
#endif
/**
* get the temperature value
*
* @return the temperature value in degrees Celcius
*/
virtual float getTemperature();
/**
* enable onboard temperature measurement sensor
*
* @param enable true to enable temperature sensor, false to disable
* @return true if successful, false otherwise
*/
bool enableTemperatureSensor(bool enable);
/**
* configure external sync. An external signal connected to the
* FSYNC pin can be sampled by configuring EXT_SYNC_SET. Signal
* changes to the FSYNC pin are latched so that short strobes may
* be captured. The latched FSYNC signal will be sampled at the
* Sampling Rate, as defined in register 25. After sampling, the
* latch will reset to the current FSYNC signal state.
*
* The sampled value will be reported in place of the least
* significant bit in a sensor data register determined by the
* value of EXT_SYNC_SET
*
* @param val one of the EXT_SYNC_SET_T values
* @return true if successful, false otherwise
*/
bool setExternalSync(EXT_SYNC_SET_T val);
/**
* enable I2C Bypass. Enabling this feature allows devices on the
* MPU60X0 auxiliary I2C bus to be visible on the MCU's I2C bus.
*
* @param enable true to I2C bypass
* @return true if successful, false otherwise
*/
bool enableI2CBypass(bool enable);
/**
* set the motion detection threshold for interrupt generation.
* Motion is detected when the absolute value of any of the
* accelerometer measurements exceeds this Motion detection
* threshold.
*
* @param thr threshold
* @return true if successful, false otherwise
*/
bool setMotionDetectionThreshold(uint8_t thr);
/**
* return the interrupt status register.
*
* @return the interrupt status word (see INT_STATUS_BITS_T)
*/
uint8_t getInterruptStatus();
/**
* set the interrupt enables
*
* @param enables bitmask of INT_ENABLE_BITS_T values to enable
* @return true if successful, false otherwise
*/
bool setInterruptEnables(uint8_t enables);
/**
* get the current interrupt enables register
*
* @return bitmask of INT_ENABLE_BITS_T values
*/
uint8_t getInterruptEnables();
/**
* set the interrupt pin configuration
*
* @param cfg bitmask of INT_PIN_CFG_BITS_T values
* @return true if successful, false otherwise
*/
bool setInterruptPinConfig(uint8_t cfg);
/**
* get the current interrupt pin configuration
*
* @return bitmask of INT_PIN_CFG_BITS_T values
*/
uint8_t getInterruptPinConfig();
/**
* install an interrupt handler.
*
* @param gpio gpio pin to use as interrupt pin
* @param level the interrupt trigger level (one of mraa::Edge
* values). Make sure that you have configured the interrupt pin
* (setInterruptPinConfig()) properly for whatever level you
* choose.
* @param isr the interrupt handler, accepting a void * argument
* @param arg the argument to pass the the interrupt handler
*/
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
void installISR(int gpio, mraa::Edge level, jobject runnable);
#else
void installISR(int gpio, mraa::Edge level, void (*isr)(void *), void *arg);
#endif
/**
* uninstall a previously installed interrupt handler
*
*/
void uninstallISR();
protected:
// uncompensated accelerometer and gyroscope values
float m_accelX;
float m_accelY;
float m_accelZ;
float m_gyroX;
float m_gyroY;
float m_gyroZ;
// uncompensated temperature value
float m_temp;
// accelerometer and gyro scaling factors, depending on their Full
// Scale settings.
float m_accelScale;
float m_gyroScale;
private:
mraa::I2c m_i2c;
uint8_t m_addr;
mraa::Gpio *m_gpioIRQ;
};
}