Files
upm/src/h3lis331dl/h3lis331dl.cxx
Noel Eck 922e0cc26b cpp_headers: Renamed C++ headers from .h -> .hpp
To make room for UPM C and C++ sensor code to coexist, all UPM
C++ headers have been renamed from h -> hpp.  This commit contains
updates to documentation, includes, cmake collateral, examples, and
swig interface files.

    * Renamed all cxx/cpp header files which contain the string
    'copyright intel' from .h -> .hpp (if not already hpp).

    * Replaced all references to .h with .hpp in documentation,
    source files, cmake collateral, example code, and swig interface
    files.

    * Replaced cmake variable module_h with module_hpp.

    * Intentionally left upm.h since this file currently does not
    contain code (documentation only).

Signed-off-by: Noel Eck <noel.eck@intel.com>
2016-04-28 14:00:54 -07:00

625 lines
13 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <math.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include "h3lis331dl.hpp"
using namespace upm;
using namespace std;
H3LIS331DL::H3LIS331DL(int bus, uint8_t address):
m_i2c(bus)
{
m_addr = address;
mraa::Result rv;
if ( (rv = m_i2c.address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.address() failed");
return;
}
m_rawX = m_rawY = m_rawZ = 0;
setAdjustmentOffsets(0, 0, 0);
}
H3LIS331DL::~H3LIS331DL()
{
}
bool H3LIS331DL::init(DR_BITS_T odr, PM_BITS_T pm, FS_BITS_T fs)
{
if (!setDataRate(odr)) {
return false;
}
if (!setPowerMode(pm)) {
return false;
}
if (!setFullScale(fs)) {
return false;
}
// now enable X, Y, and Z axes
if (!enableAxis(REG1_XEN | REG1_YEN | REG1_ZEN)) {
return false;
}
return true;
}
uint8_t H3LIS331DL::getChipID()
{
return m_i2c.readReg(REG_WHOAMI);
}
bool H3LIS331DL::setDataRate(DR_BITS_T odr)
{
uint8_t reg1 = m_i2c.readReg(REG_REG1);
reg1 &= ~(REG1_DR0 | REG1_DR1);
reg1 |= (odr << REG1_DR_SHIFT);
if (m_i2c.writeReg(REG_REG1, reg1))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setPowerMode(PM_BITS_T pm)
{
uint8_t reg1 = m_i2c.readReg(REG_REG1);
reg1 &= ~(REG1_PM0 | REG1_PM1 | REG1_PM2);
reg1 |= (pm << REG1_PM_SHIFT);
if (m_i2c.writeReg(REG_REG1, reg1))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableAxis(uint8_t axisEnable)
{
uint8_t reg1 = m_i2c.readReg(REG_REG1);
reg1 &= ~(REG1_XEN | REG1_YEN | REG1_ZEN);
reg1 |= (axisEnable & (REG1_XEN | REG1_YEN | REG1_ZEN));
if (m_i2c.writeReg(REG_REG1, reg1))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setFullScale(FS_BITS_T fs)
{
uint8_t reg4 = m_i2c.readReg(REG_REG4);
reg4 &= ~(REG4_FS0 | REG4_FS1);
reg4 |= (fs << REG4_FS_SHIFT);
if (m_i2c.writeReg(REG_REG4, reg4))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setHPCF(HPCF_BITS_T val)
{
uint8_t reg = m_i2c.readReg(REG_REG2);
reg &= ~(REG2_HPCF0 | REG2_HPCF1);
reg |= (val << REG2_HPCF_SHIFT);
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setHPM(HPM_BITS_T val)
{
uint8_t reg = m_i2c.readReg(REG_REG2);
reg &= ~(REG2_HPM0 | REG2_HPM1);
reg |= (val << REG2_HPM_SHIFT);
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::boot()
{
uint8_t reg = m_i2c.readReg(REG_REG2);
reg |= REG2_BOOT;
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
// wait for the boot bit to clear
do {
reg = m_i2c.readReg(REG_REG2);
usleep(200000);
} while (reg & REG2_BOOT);
return true;
}
bool H3LIS331DL::enableHPF1(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG2);
if (enable)
reg |= REG2_HPEN1;
else
reg &= ~REG2_HPEN1;
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableHPF2(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG2);
if (enable)
reg |= REG2_HPEN2;
else
reg &= ~REG2_HPEN2;
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableFDS(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG2);
if (enable)
reg |= REG2_FDS;
else
reg &= ~REG2_FDS;
if (m_i2c.writeReg(REG_REG2, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterruptActiveLow(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
if (enable)
reg |= REG3_IHL;
else
reg &= ~REG3_IHL;
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterruptOpenDrain(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
if (enable)
reg |= REG3_PP_OD;
else
reg &= ~REG3_PP_OD;
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt1Latch(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
if (enable)
reg |= REG3_LIR1;
else
reg &= ~REG3_LIR1;
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2Latch(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
if (enable)
reg |= REG3_LIR2;
else
reg &= ~REG3_LIR2;
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt1PadConfig(I_CFG_BITS_T val)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
reg &= ~(REG3_I1_CFG0 | REG3_I1_CFG1);
reg |= (val << REG3_I1_CFG_SHIFT);
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2PadConfig(I_CFG_BITS_T val)
{
uint8_t reg = m_i2c.readReg(REG_REG3);
reg &= ~(REG3_I2_CFG0 | REG3_I2_CFG1);
reg |= (val << REG3_I2_CFG_SHIFT);
if (m_i2c.writeReg(REG_REG3, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableBDU(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG4);
if (enable)
reg |= REG4_BDU;
else
reg &= ~REG4_BDU;
if (m_i2c.writeReg(REG_REG4, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableBLE(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG4);
if (enable)
reg |= REG4_BLE;
else
reg &= ~REG4_BLE;
if (m_i2c.writeReg(REG_REG4, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::enableSleepToWake(bool enable)
{
uint8_t reg = m_i2c.readReg(REG_REG5);
if (enable)
reg |= (REG5_TURNON0 | REG5_TURNON1);
else
reg &= ~(REG5_TURNON0 | REG5_TURNON1);
if (m_i2c.writeReg(REG_REG5, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
uint8_t H3LIS331DL::getStatus()
{
return m_i2c.readReg(REG_STATUS);
}
bool H3LIS331DL::setInterrupt1Config(uint8_t val)
{
uint8_t reg = m_i2c.readReg(REG_INT1_CFG);
// mask off reserved bit
reg = (val & ~0x40);
if (m_i2c.writeReg(REG_INT1_CFG, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt1Source(uint8_t val)
{
uint8_t reg = m_i2c.readReg(REG_INT1_SRC);
// mask off reserved bit
reg = (val & ~0x80);
if (m_i2c.writeReg(REG_INT1_SRC, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt1Threshold(uint8_t val)
{
if (m_i2c.writeReg(REG_INT1_THS, val))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt1Duration(uint8_t val)
{
if (m_i2c.writeReg(REG_INT1_DUR, val))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2Config(uint8_t val)
{
uint8_t reg = m_i2c.readReg(REG_INT2_CFG);
// mask off reserved bit
reg = (val & ~0x40);
if (m_i2c.writeReg(REG_INT2_CFG, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2Source(uint8_t val)
{
uint8_t reg = m_i2c.readReg(REG_INT2_SRC);
// mask off reserved bit
reg = (val & ~0x80);
if (m_i2c.writeReg(REG_INT2_SRC, reg))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2Threshold(uint8_t val)
{
if (m_i2c.writeReg(REG_INT2_THS, val))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
bool H3LIS331DL::setInterrupt2Duration(uint8_t val)
{
if (m_i2c.writeReg(REG_INT2_DUR, val))
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.writeReg() failed");
return false;
}
return true;
}
void H3LIS331DL::update()
{
uint8_t low, high;
// X
low = m_i2c.readReg(REG_OUT_X_L);
high = m_i2c.readReg(REG_OUT_X_H);
m_rawX = ((high << 8) | low);
// Y
low = m_i2c.readReg(REG_OUT_Y_L);
high = m_i2c.readReg(REG_OUT_Y_H);
m_rawY = ((high << 8) | low);
// Z
low = m_i2c.readReg(REG_OUT_Z_L);
high = m_i2c.readReg(REG_OUT_Z_H);
m_rawZ = ((high << 8) | low);
}
void H3LIS331DL::setAdjustmentOffsets(int adjX, int adjY, int adjZ)
{
m_adjX = adjX;
m_adjY = adjY;
m_adjZ = adjZ;
}
void H3LIS331DL::getAcceleration(float *aX, float *aY, float *aZ)
{
const float gains = 0.003; // Seeed magic number?
*aX = float(m_rawX - m_adjX) * gains;
*aY = float(m_rawY - m_adjY) * gains;
*aZ = float(m_rawZ - m_adjZ) * gains;
}
void H3LIS331DL::getRawXYZ(int *x, int *y, int*z)
{
*x = m_rawX;
*y = m_rawY;
*z = m_rawZ;
}
void H3LIS331DL::getXYZ(int *x, int *y, int*z)
{
*x = (m_rawX - m_adjX);
*y = (m_rawY - m_adjY);
*z = (m_rawZ - m_adjZ);
}
#ifdef SWIGJAVA
float *H3LIS331DL::getAcceleration()
{
float *v = new float[3];
getAcceleration(&v[0], &v[1], &v[2]);
return v;
}
int *H3LIS331DL::getRawXYZ()
{
int *v = new int[3];
getRawXYZ(&v[0], &v[1], &v[2]);
return v;
}
int *H3LIS331DL::getXYZ()
{
int *v = new int[3];
getXYZ(&v[0], &v[1], &v[2]);
return v;
}
#endif