upm/src/rf22/rf22.cxx
Noel Eck 65fc70a31a rf22: Static analysis fixes
A few small fixes for the rf22 to satisfy klocwork.

    * Converted malloc's to new's to be more C++'ish and since
      malloc return were not checked.
    * Initialize data, buf, and _lastInterruptFlags
    * Up'ed RF22_MAX_MESSAGE_LEN to 64.
        Reason:

void RF22::sendNextFragment()
{
    if (_txBufSentIndex < _bufLen)
    {
    // Some left to send?
    uint8_t len = _bufLen - _txBufSentIndex;
    // But dont send too much
    if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1))
        len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1);
    spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
    _txBufSentIndex += len;
    }
}

        RF22_FIFO_SIZE = 64
        RF22_TXFFAEM_THRESHOLD = 4
        RF22_MAX_MESSAGE_LEN = 50
        _buf[RF22_MAX_MESSAGE_LEN]
        Length of _buf *was* 50, so if the 'But dont send too much' above
        was to happen, the length is set to 63, which overruns
        _buf[RF22_MAX_MESSAGE_LEN]

Signed-off-by: Noel Eck <noel.eck@intel.com>
2017-03-06 12:13:27 -08:00

757 lines
24 KiB
C++

/*
* Author: Kiveisha Yevgeniy
* Copyright (c) 2015-2016 Intel Corporation
*
* Author: Mike McCauley
* Copyright (c) 2011 Mike McCauley
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <cstring>
#include <cmath>
#include <sys/time.h>
#include "rf22.hpp"
using namespace upm;
// These are indexed by the values of ModemConfigChoice
// Canned modem configurations generated with
// http://www.hoperf.com/upload/rf/RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
// Stored in flash (program) memory to save SRAM
static const RF22::ModemConfig MODEM_CONFIG_TABLE[] =
{
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
// All the following enable FIFO with reg 71
// 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72
// FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
// GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
// These differ from FSK only in register 71, for the modulation type
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
// OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
{ 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
{ 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
{ 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
{ 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
{ 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
{ 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
};
RF22::RF22(int spiBus, int slaveSelectPin, int interruptPin)
{
_idleMode = RF22_XTON; // Default idle state is READY mode
_mode = RF22_MODE_IDLE; // We start up in idle mode
_rxGood = 0;
_rxBad = 0;
_txGood = 0;
//Initialize the SPI bus and pins, MRAA will log any failures here
// start the SPI library:
// Note the RF22 wants mode 0, MSB first and default to 1 Mbps
_spi = mraa_spi_init(spiBus);
mraa_spi_mode (_spi, MRAA_SPI_MODE0);
mraa_spi_lsbmode(_spi, 0);
mraa_spi_frequency(_spi, 1000000); // 1Mhz
_cs = mraa_gpio_init(slaveSelectPin);
mraa_gpio_dir(_cs, MRAA_GPIO_OUT);
_irq = mraa_gpio_init(interruptPin);
mraa_gpio_dir(_irq, MRAA_GPIO_IN);
mraa_gpio_isr(_irq, MRAA_GPIO_EDGE_FALLING, &isr, (void*)this);
}
RF22::~RF22()
{
mraa_spi_stop(_spi);
mraa_gpio_close(_cs);
mraa_gpio_close(_irq);
}
uint8_t RF22::init()
{
// Wait for RF22 POR (up to 16msec)
usleep (16);
// Initialise the slave select pin
mraa_gpio_write(_cs, 0x1);
usleep (100);
// Software reset the device
reset();
// Get the device type and check it
// This also tests whether we are really connected to a device
_deviceType = spiRead(RF22_REG_00_DEVICE_TYPE);
if ( _deviceType != RF22_DEVICE_TYPE_RX_TRX
&& _deviceType != RF22_DEVICE_TYPE_TX)
return 0;
clearTxBuf();
clearRxBuf();
// Most of these are the POR default
spiWrite(RF22_REG_7D_TX_FIFO_CONTROL2, RF22_TXFFAEM_THRESHOLD);
spiWrite(RF22_REG_7E_RX_FIFO_CONTROL, RF22_RXFFAFULL_THRESHOLD);
spiWrite(RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM);
// Configure the message headers
// Here we set up the standard packet format for use by the RF22 library
// 8 nibbles preamble
// 2 SYNC words 2d, d4
// Header length 4 (to, from, id, flags)
// 1 octet of data length (0 to 255)
// 0 to 255 octets data
// 2 CRC octets as CRC16(IBM), computed on the header, length and data
// On reception the to address is check for validity against RF22_REG_3F_CHECK_HEADER3
// or the broadcast address of 0xff
// If no changes are made after this, the transmitted
// to address will be 0xff, the from address will be 0xff
// and all such messages will be accepted. This permits the out-of the box
// RF22 config to act as an unaddresed, unreliable datagram service
spiWrite(RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3);
spiWrite(RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2);
setPreambleLength(8);
uint8_t syncwords[] = { 0x2d, 0xd4 };
setSyncWords(syncwords, sizeof(syncwords));
setPromiscuous(0);
// Check the TO header against RF22_DEFAULT_NODE_ADDRESS
spiWrite(RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS);
// Set the default transmit header values
setHeaderTo(RF22_DEFAULT_NODE_ADDRESS);
setHeaderFrom(RF22_DEFAULT_NODE_ADDRESS);
setHeaderId(0);
setHeaderFlags(0);
// Ensure the antenna can be switched automatically according to transmit and receive
// This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
// This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
spiWrite (RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
spiWrite (RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
// Enable interrupts
spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM | RF22_ENRXFFAFULL | RF22_ENPKSENT | RF22_ENPKVALID | RF22_ENCRCERROR | RF22_ENFFERR);
spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL);
// Set some defaults. An innocuous ISM frequency, and reasonable pull-in
setFrequency(434.0, 0.05);
// setFrequency(900.0);
// Some slow, reliable default speed and modulation
setModemConfig(FSK_Rb2_4Fd36);
// setModemConfig(FSK_Rb125Fd125);
// Minimum power
setTxPower(RF22_TXPOW_8DBM);
// setTxPower(RF22_TXPOW_17DBM);
return 1;
}
// C++ level interrupt handler for this instance
void RF22::handleInterrupt()
{
uint8_t _lastInterruptFlags[2] = {};
// Read the interrupt flags which clears the interrupt
spiBurstRead(RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2);
if (_lastInterruptFlags[0] & RF22_IFFERROR)
{
resetFifos(); // Clears the interrupt
if (_mode == RF22_MODE_TX)
restartTransmit();
else if (_mode == RF22_MODE_RX)
clearRxBuf();
}
// Caution, any delay here may cause a FF underflow or overflow
if (_lastInterruptFlags[0] & RF22_ITXFFAEM)
{
// See if more data has to be loaded into the Tx FIFO
sendNextFragment();
}
if (_lastInterruptFlags[0] & RF22_IRXFFAFULL)
{
// Caution, any delay here may cause a FF overflow
// Read some data from the Rx FIFO
readNextFragment();
}
if (_lastInterruptFlags[0] & RF22_IEXT)
{
// This is not enabled by the base code, but users may want to enable it
handleExternalInterrupt();
}
if (_lastInterruptFlags[1] & RF22_IWUT)
{
// This is not enabled by the base code, but users may want to enable it
handleWakeupTimerInterrupt();
}
if (_lastInterruptFlags[0] & RF22_IPKSENT)
{
_txGood++;
// Transmission does not automatically clear the tx buffer.
// Could retransmit if we wanted
// RF22 transitions automatically to Idle
_mode = RF22_MODE_IDLE;
}
if (_lastInterruptFlags[0] & RF22_IPKVALID)
{
uint8_t len = spiRead(RF22_REG_4B_RECEIVED_PACKET_LENGTH);
// May have already read one or more fragments
// Get any remaining unread octets, based on the expected length
// First make sure we dont overflow the buffer in the case of a stupid length
// or partial bad receives
if ( len > RF22_MAX_MESSAGE_LEN
|| len < _bufLen)
{
_rxBad++;
_mode = RF22_MODE_IDLE;
clearRxBuf();
return; // Hmmm receiver buffer overflow.
}
spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen);
_rxGood++;
_bufLen = len;
_mode = RF22_MODE_IDLE;
_rxBufValid = true;
}
if (_lastInterruptFlags[0] & RF22_ICRCERROR)
{
_rxBad++;
clearRxBuf();
resetRxFifo();
_mode = RF22_MODE_IDLE;
setModeRx(); // Keep trying
}
if (_lastInterruptFlags[1] & RF22_IPREAVAL)
{
_lastRssi = spiRead(RF22_REG_26_RSSI);
clearRxBuf();
}
}
void RF22::isr(void* args)
{
RF22* This = (RF22*)(args);
This->handleInterrupt();
}
void RF22::reset()
{
spiWrite(RF22_REG_07_OPERATING_MODE1, RF22_SWRES);
// Wait for it to settle
usleep(100); // SWReset time is nominally 100usec
}
uint8_t RF22::spiRead(uint8_t reg)
{
uint8_t data = 0;
spiBurstRead (reg, &data, 1);
return data;
}
void RF22::spiWrite(uint8_t reg, uint8_t val)
{
spiBurstWrite (reg, &val, 1);
}
void RF22::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
{
uint8_t *request = new uint8_t[len + 1]();
uint8_t *response = new uint8_t[len + 1]();
request[0] = reg & ~RF22_SPI_WRITE_MASK;
memcpy (&request[1], dest, len);
mraa_gpio_write(_cs, 0x1);
mraa_gpio_write(_cs, 0x0);
usleep(100);
mraa_spi_transfer_buf(_spi, request, response, len + 1);
usleep(100);
mraa_gpio_write(_cs, 0x1);
memcpy (dest, &response[1], len);
delete[] request;
delete[] response;
}
void RF22::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
{
uint8_t *request = new uint8_t[len + 1]();
uint8_t *response = new uint8_t[len + 1]();
request[0] = reg | RF22_SPI_WRITE_MASK;
memcpy (&request[1], src, len);
mraa_gpio_write(_cs, 0x1);
mraa_gpio_write(_cs, 0x0);
usleep(100);
mraa_spi_transfer_buf(_spi, request, response, len + 1);
usleep(100);
mraa_gpio_write(_cs, 0x1);
delete[] request;
delete[] response;
}
uint8_t RF22::statusRead()
{
return spiRead(RF22_REG_02_DEVICE_STATUS);
}
uint8_t RF22::adcRead(uint8_t adcsel,
uint8_t adcref ,
uint8_t adcgain,
uint8_t adcoffs)
{
uint8_t configuration = adcsel | adcref | (adcgain & RF22_ADCGAIN);
spiWrite(RF22_REG_0F_ADC_CONFIGURATION, configuration | RF22_ADCSTART);
spiWrite(RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
// Conversion time is nominally 305usec
// Wait for the DONE bit
while (!(spiRead(RF22_REG_0F_ADC_CONFIGURATION) & RF22_ADCDONE))
;
// Return the value
return spiRead(RF22_REG_11_ADC_VALUE);
}
uint8_t RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
{
spiWrite(RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RF22_ENTSOFFS);
spiWrite(RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
return adcRead(RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RF22_ADCREF_BANDGAP_VOLTAGE);
}
uint16_t RF22::wutRead()
{
uint8_t buf[2] = {};
spiBurstRead(RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
}
// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
void RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
{
uint8_t period[3];
period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
period[1] = wtm >> 8;
period[2] = wtm & 0xff;
spiBurstWrite(RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
}
// Returns true if center + (fhch * fhs) is within limits
// Caution, different versions of the RF22 support different max freq
// so YMMV
uint8_t RF22::setFrequency(float center, float afcPullInRange)
{
uint8_t fbsel = RF22_SBSEL;
uint8_t afclimiter;
if (center < 240.0 || center > 960.0) // 930.0 for early silicon
return false;
if (center >= 480.0)
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.318750)
return false;
center /= 2;
fbsel |= RF22_HBSEL;
afclimiter = afcPullInRange * 1000000.0 / 1250.0;
}
else
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
return false;
afclimiter = afcPullInRange * 1000000.0 / 625.0;
}
center /= 10.0;
float integerPart = floor(center);
float fractionalPart = center - integerPart;
uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
fbsel |= fb;
uint16_t fc = fractionalPart * 64000;
spiWrite(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
spiWrite(RF22_REG_74_FREQUENCY_OFFSET2, 0);
spiWrite(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
spiWrite(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
spiWrite(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
spiWrite(RF22_REG_2A_AFC_LIMITER, afclimiter);
return !(statusRead() & RF22_FREQERR);
}
// Step size in 10kHz increments
// Returns true if centre + (fhch * fhs) is within limits
uint8_t RF22::setFHStepSize(uint8_t fhs)
{
spiWrite(RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
return !(statusRead() & RF22_FREQERR);
}
// Adds fhch * fhs to centre frequency
// Returns true if centre + (fhch * fhs) is within limits
uint8_t RF22::setFHChannel(uint8_t fhch)
{
spiWrite(RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
return !(statusRead() & RF22_FREQERR);
}
uint8_t RF22::rssiRead()
{
return spiRead(RF22_REG_26_RSSI);
}
uint8_t RF22::ezmacStatusRead()
{
return spiRead(RF22_REG_31_EZMAC_STATUS);
}
void RF22::setMode(uint8_t mode)
{
spiWrite(RF22_REG_07_OPERATING_MODE1, mode);
}
void RF22::setModeIdle()
{
if (_mode != RF22_MODE_IDLE)
{
setMode(_idleMode);
_mode = RF22_MODE_IDLE;
}
}
void RF22::setModeRx()
{
if (_mode != RF22_MODE_RX)
{
setMode(_idleMode | RF22_RXON);
_mode = RF22_MODE_RX;
}
}
void RF22::setModeTx()
{
if (_mode != RF22_MODE_TX)
{
setMode(_idleMode | RF22_TXON);
_mode = RF22_MODE_TX;
// Hmmm, if you dont clear the RX FIFO here, then it appears that going
// to transmit mode in the middle of a receive can corrupt the
// RX FIFO
resetRxFifo();
clearRxBuf();
}
}
uint8_t RF22::mode()
{
return _mode;
}
void RF22::setTxPower(uint8_t power)
{
spiWrite(RF22_REG_6D_TX_POWER, power);
}
// Sets registers from a canned modem configuration structure
void RF22::setModemRegisters(const ModemConfig* config)
{
spiWrite(RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c);
spiWrite(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f);
spiBurstWrite(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
spiBurstWrite(RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3);
spiWrite(RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58);
spiWrite(RF22_REG_69_AGC_OVERRIDE1, config->reg_69);
spiBurstWrite(RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
uint8_t RF22::setModemConfig(ModemConfigChoice index)
{
if (index > (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
RF22::ModemConfig cfg;
// memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig)); // !!!!!!!!!!!!!!!!!!! MIGHT CAUSE ISSUES
memcpy(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig));
setModemRegisters(&cfg);
return true;
}
// REVISIT: top bit is in Header Control 2 0x33
void RF22::setPreambleLength(uint8_t nibbles)
{
spiWrite(RF22_REG_34_PREAMBLE_LENGTH, nibbles);
}
// Caution doesnt set sync word len in Header Control 2 0x33
void RF22::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
spiBurstWrite(RF22_REG_36_SYNC_WORD3, syncWords, len);
}
void RF22::clearRxBuf()
{
_bufLen = 0;
_rxBufValid = false;
}
uint8_t RF22::available()
{
if (!_rxBufValid)
setModeRx(); // Make sure we are receiving
return _rxBufValid;
}
// Blocks until a valid message is received
void RF22::waitAvailable()
{
while (!available())
;
}
// Blocks until a valid message is received or timeout expires
// Return true if there is a message available
bool RF22::waitAvailableTimeout(unsigned long timeout)
{
unsigned long endtime = getTimestamp() + timeout;
unsigned long currenttime = getTimestamp();
while (currenttime < endtime) {
currenttime = getTimestamp();
if (available()) {
return true;
}
}
return false;
}
void RF22::waitPacketSent()
{
while (_mode == RF22_MODE_TX)
; // Wait for any previous transmit to finish
}
// Diagnostic help
void RF22::printBuffer(const char* prompt, const uint8_t* buf, uint8_t len)
{
}
uint8_t RF22::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (*len > _bufLen)
*len = _bufLen;
memcpy(buf, _buf, *len);
clearRxBuf();
return true;
}
void RF22::clearTxBuf()
{
_bufLen = 0;
_txBufSentIndex = 0;
}
void RF22::startTransmit()
{
sendNextFragment(); // Actually the first fragment
spiWrite(RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
setModeTx(); // Start the transmitter, turns off the receiver
}
// Restart the transmission of a packet that had a problem
void RF22::restartTransmit()
{
_mode = RF22_MODE_IDLE;
_txBufSentIndex = 0;
startTransmit();
}
uint8_t RF22::send(const uint8_t* data, uint8_t len)
{
waitPacketSent();
if (!fillTxBuf(data, len))
return false;
startTransmit();
return true;
}
uint8_t RF22::fillTxBuf(const uint8_t* data, uint8_t len)
{
clearTxBuf();
if (!len)
return false;
return appendTxBuf(data, len);
}
uint8_t RF22::appendTxBuf(const uint8_t* data, uint8_t len)
{
if (((uint16_t)_bufLen + len) > RF22_MAX_MESSAGE_LEN)
return false;
memcpy(_buf + _bufLen, data, len);
_bufLen += len;
return true;
}
// Assumption: there is currently <= RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
void RF22::sendNextFragment()
{
if (_txBufSentIndex < _bufLen)
{
// Some left to send?
uint8_t len = _bufLen - _txBufSentIndex;
// But dont send too much
if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1))
len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1);
spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
_txBufSentIndex += len;
}
}
// Assumption: there are at least RF22_RXFFAFULL_THRESHOLD in the RX FIFO
// That means it should only be called after a RXFFAFULL interrupt
void RF22::readNextFragment()
{
if (((uint16_t)_bufLen + RF22_RXFFAFULL_THRESHOLD) > RF22_MAX_MESSAGE_LEN)
return; // Hmmm receiver overflow. Should never occur
// Read the RF22_RXFFAFULL_THRESHOLD octets that should be there
spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RF22_RXFFAFULL_THRESHOLD);
_bufLen += RF22_RXFFAFULL_THRESHOLD;
}
// Clear the FIFOs
void RF22::resetFifos()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX | RF22_FFCLRTX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// Clear the Rx FIFO
void RF22::resetRxFifo()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// CLear the TX FIFO
void RF22::resetTxFifo()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRTX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// Default implmentation does nothing. Override if you wish
void RF22::handleExternalInterrupt()
{
}
// Default implmentation does nothing. Override if you wish
void RF22::handleWakeupTimerInterrupt()
{
}
void RF22::setHeaderTo(uint8_t to)
{
spiWrite(RF22_REG_3A_TRANSMIT_HEADER3, to);
}
void RF22::setHeaderFrom(uint8_t from)
{
spiWrite(RF22_REG_3B_TRANSMIT_HEADER2, from);
}
void RF22::setHeaderId(uint8_t id)
{
spiWrite(RF22_REG_3C_TRANSMIT_HEADER1, id);
}
void RF22::setHeaderFlags(uint8_t flags)
{
spiWrite(RF22_REG_3D_TRANSMIT_HEADER0, flags);
}
uint8_t RF22::headerTo()
{
return spiRead(RF22_REG_47_RECEIVED_HEADER3);
}
uint8_t RF22::headerFrom()
{
return spiRead(RF22_REG_48_RECEIVED_HEADER2);
}
uint8_t RF22::headerId()
{
return spiRead(RF22_REG_49_RECEIVED_HEADER1);
}
uint8_t RF22::headerFlags()
{
return spiRead(RF22_REG_4A_RECEIVED_HEADER0);
}
uint8_t RF22::lastRssi()
{
return _lastRssi;
}
void RF22::setPromiscuous(uint8_t promiscuous)
{
spiWrite(RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
}
uint64_t
RF22::getTimestamp () {
struct timeval tv;
gettimeofday(&tv, NULL);
return (uint64_t)(1000000 * tv.tv_sec + tv.tv_usec);
}