upm/src/adc121c021/adc121c021.cxx
Jon Trulson 878ca55385 adc121c021: Initial implementation
Tested on the Grove I2C ADC.

Signed-off-by: Jon Trulson <jtrulson@ics.com>
Signed-off-by: Sarah Knepper <sarah.knepper@intel.com>
2015-01-12 17:18:00 -08:00

251 lines
5.8 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2014 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <string>
#include "adc121c021.h"
using namespace upm;
using namespace std;
ADC121C021::ADC121C021(int bus, uint8_t address, float vref)
{
// setup our i2c link
m_i2c = mraa_i2c_init(bus);
m_addr = address;
mraa_result_t ret = mraa_i2c_address(m_i2c, m_addr);
if (ret != MRAA_SUCCESS)
cerr << "ADC121C021: Could not initialize i2c bus. " << endl;
m_vref = vref;
}
ADC121C021::~ADC121C021()
{
mraa_i2c_stop(m_i2c);
}
mraa_result_t ADC121C021::writeByte(uint8_t reg, uint8_t byte)
{
return mraa_i2c_write_byte_data(m_i2c, byte, reg);
}
mraa_result_t ADC121C021::writeWord(uint8_t reg, uint16_t word)
{
// We need to swap the bytes
uint8_t b1 = (word & 0xff00) >> 8;
word <<= 8;
word |= b1;
return mraa_i2c_write_word_data(m_i2c, word, reg);
}
uint8_t ADC121C021::readByte(uint8_t reg)
{
return mraa_i2c_read_byte_data(m_i2c, reg);
}
uint16_t ADC121C021::readWord(uint8_t reg)
{
uint16_t val = mraa_i2c_read_word_data(m_i2c, reg);
uint8_t b1;
// The value returned is in the wrong byte order, so we need to swap them
b1 = (val & 0xff00) >> 8;
val <<= 8;
val |= b1;
return val;
}
uint16_t ADC121C021::value()
{
// mask off alert flag and reserved bits
return (readWord(ADC121C021_REG_RESULT) & 0x0fff);
}
float ADC121C021::valueToVolts(uint16_t val)
{
// The arduino example multiplies this by 2, which seems wrong. If
// the reference voltage is 3.0, then you should never get a voltage
// value higher than that.
//
// val * m_vref * 2.0 / ADC121C021_RESOLUTION
return (val * m_vref / ADC121C021_RESOLUTION);
}
bool ADC121C021::getAlertStatus()
{
// high order bit is the alert flag, mask off the rest
bool rv = (readWord(ADC121C021_REG_RESULT) & 0x8000) ? true : false;
if (rv)
{
// read the alert low and high values and set the appropriate
// member variables
uint8_t astatus = readByte(ADC121C021_REG_ALERT_STATUS);
if (astatus & 0x01)
m_alertLow = true;
else
m_alertLow = false;
if (astatus & 0x02)
m_alertHigh = true;
else
m_alertHigh = false;
}
return rv;
}
void ADC121C021::clearAlertStatus()
{
// zero out both the low and high alert flags
writeByte(ADC121C021_REG_ALERT_STATUS, 0x03);
m_alertHigh = false;
m_alertLow = false;
}
void ADC121C021::enableAlertFlag(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x08;
else
val &= ~0x08;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertPin(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x04;
else
val &= ~0x04;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertHold(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x10;
else
val &= ~0x10;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::enableAlertPinPolarityHigh(bool enable)
{
// read the current config register
uint8_t val = readByte(ADC121C021_REG_CONFIG);
if (enable)
val |= 0x01;
else
val &= ~0x01;
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
void ADC121C021::setAutomaticConversion(ADC121C021_CYCLE_TIME_T cycleTime)
{
// first we
// read the current config register, masking off the cycle time bits
uint8_t val = readByte(ADC121C021_REG_CONFIG) & 0x1f;
val |= ((uint8_t)cycleTime << 5);
// write the register back
writeByte(ADC121C021_REG_CONFIG, val);
}
mraa_result_t ADC121C021::setAlertLowLimit(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_LIM_UNDER, limit);
}
mraa_result_t ADC121C021::setAlertHighLimit(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_LIM_OVER, limit);
}
mraa_result_t ADC121C021::setHysteresis(uint16_t limit)
{
// mask off the invalid bits in case they were set
limit &= 0x0fff;
// write it
return writeWord(ADC121C021_REG_ALERT_HYS, limit);
}
uint16_t ADC121C021::getHighestConversion()
{
return readWord(ADC121C021_REG_HIGHEST_CONV);
}
uint16_t ADC121C021::getLowestConversion()
{
return readWord(ADC121C021_REG_LOWEST_CONV);
}
mraa_result_t ADC121C021::clearHighestConversion()
{
return writeWord(ADC121C021_REG_HIGHEST_CONV, 0x0000);
}
mraa_result_t ADC121C021::clearLowestConversion()
{
return writeWord(ADC121C021_REG_LOWEST_CONV, 0x0fff);
}