upm/src/bmx055/bmm150.cxx
Jon Trulson 0fb56356fb bmx055: fix up some issues reported by static analysis
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2016-07-12 16:05:22 -06:00

689 lines
17 KiB
C++

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// The trimming algorithms are taken from the Bosch BMM050 driver code
/****************************************************************************
* Copyright (C) 2015 - 2016 Bosch Sensortec GmbH
*
* File : bmm050.h
*
* Date : 2016/03/17
*
* Revision : 2.0.5 $
*
* Usage: Sensor Driver for BMM050 and BMM150 sensor
*
****************************************************************************
*
* section License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
**************************************************************************/
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <string.h>
#include "bmm150.hpp"
#define BMM150_DEFAULT_CHIPID 0x32
using namespace upm;
using namespace std;
BMM150::BMM150(int bus, int addr, int cs) :
m_i2c(0), m_spi(0), m_gpioIntr(0), m_gpioDR(0), m_gpioCS(0)
{
m_magX = 0;
m_magY = 0;
m_magZ = 0;
m_hall = 0;
m_dig_x1 = 0;
m_dig_y1 = 0;
m_dig_z4 = 0;
m_dig_x2 = 0;
m_dig_y2 = 0;
m_dig_z2 = 0;
m_dig_z1 = 0;
m_dig_xyz1 = 0;
m_dig_z3 = 0;
m_dig_xy2 = 0;
m_dig_xy1 = 0;
if (addr < 0)
{
m_addr = 0;
m_isSPI = true;
}
else
{
m_addr = uint8_t(addr);
m_isSPI = false;
}
if (m_isSPI)
{
m_spi = new mraa::Spi(bus);
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs >= 0)
{
m_gpioCS = new mraa::Gpio(cs);
m_gpioCS->dir(mraa::DIR_OUT);
}
m_spi->mode(mraa::SPI_MODE0);
m_spi->frequency(5000000);
}
else
{
// I2C
m_i2c = new mraa::I2c(bus);
mraa::Result rv;
if ((rv = m_i2c->address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(string(__FUNCTION__) +
": I2c.address() failed");
}
}
// power bit must be on for chip ID to be accessable
setPowerBit(true);
m_opmode = OPERATION_MODE_SLEEP;
usleep(50000);
// check the chip id
uint8_t chipID = getChipID();
if (chipID != BMM150_DEFAULT_CHIPID)
{
throw std::runtime_error(string(__FUNCTION__)
+ ": invalid chip ID. Expected "
+ std::to_string(int(BMM150_DEFAULT_CHIPID))
+ ", got "
+ std::to_string(int(chipID)));
}
// get trim data
readTrimData();
// call init with default options
init();
}
BMM150::~BMM150()
{
uninstallISR(INTERRUPT_INT);
uninstallISR(INTERRUPT_DR);
if (m_i2c)
delete m_i2c;
if (m_spi)
delete m_spi;
if(m_gpioCS)
delete m_gpioCS;
}
void BMM150::init(USAGE_PRESETS_T usage)
{
setPowerBit(true);
setOpmode(OPERATION_MODE_NORMAL);
usleep(50000); // 50ms, in case we are waking up
setPresetMode(usage);
// settle
usleep(50000);
}
void BMM150::update()
{
// special care when in a forced mode - need to trigger a
// measurement, and wait for the opmode to return to OPMODE_SLEEP,
// then we can read the values.
if (m_opmode == OPERATION_MODE_FORCED)
{
// trigger measurement
setOpmode(OPERATION_MODE_FORCED);
// opmode will return to sleep after measurement is complete
do {
usleep(5000);
} while (getOpmode() == OPERATION_MODE_FORCED);
}
const int bufLen = 8;
uint8_t buf[bufLen];
if (readRegs(REG_MAG_X_LSB, buf, bufLen) != bufLen)
{
throw std::runtime_error(string(__FUNCTION__)
+ ": readRegs() failed to read "
+ std::to_string(bufLen)
+ " bytes");
}
// we need to get the hall data first, since it's needed for the
// bosch compensation functions for each of the xyz axes
m_hall = uint16_t(buf[7] << 8 | (buf[6] &
(_MAG_RHALL_LSB_LSB_MASK <<
_MAG_RHALL_LSB_LSB_SHIFT)));
m_hall /= 4;
int16_t val;
// x
val = int16_t(buf[1] << 8 | (buf[0] & (_MAG_XY_LSB_LSB_MASK <<
_MAG_XY_LSB_LSB_SHIFT)));
val /= 8;
m_magX = bmm050_compensate_X_float(val, m_hall);
// y
val = int16_t(buf[3] << 8 | (buf[2] & (_MAG_XY_LSB_LSB_MASK <<
_MAG_XY_LSB_LSB_SHIFT)));
val /= 8;
m_magY = bmm050_compensate_Y_float(val, m_hall);
// z
val = int16_t(buf[5] << 8 | (buf[4] & (_MAG_Z_LSB_LSB_MASK <<
_MAG_Z_LSB_LSB_SHIFT)));
val /= 2;
m_magZ = bmm050_compensate_Z_float(val, m_hall);
}
uint8_t BMM150::readReg(uint8_t reg)
{
if (m_isSPI)
{
reg |= 0x80; // needed for read
uint8_t pkt[2] = {reg, 0};
csOn();
if (m_spi->transfer(pkt, pkt, 2))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer() failed");
}
csOff();
return pkt[1];
}
else
return m_i2c->readReg(reg);
}
int BMM150::readRegs(uint8_t reg, uint8_t *buffer, int len)
{
if (m_isSPI)
{
reg |= 0x80; // needed for read
uint8_t sbuf[len + 1];
memset((char *)sbuf, 0, len + 1);
sbuf[0] = reg;
// We need to do it this way for edison - ie: use a single
// transfer rather than breaking it up into two like we used to.
// This means a buffer copy is now required, but that's the way
// it goes.
csOn();
if (m_spi->transfer(sbuf, sbuf, len + 1))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer(buf) failed");
}
csOff();
// now copy it into user buffer
for (int i=0; i<len; i++)
buffer[i] = sbuf[i + 1];
return len;
}
else
return m_i2c->readBytesReg(reg, buffer, len);
}
void BMM150::writeReg(uint8_t reg, uint8_t val)
{
if (m_isSPI)
{
reg &= 0x7f; // mask off 0x80 for writing
uint8_t pkt[2] = {reg, val};
csOn();
if (m_spi->transfer(pkt, NULL, 2))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer() failed");
}
csOff();
}
else
{
mraa::Result rv;
if ((rv = m_i2c->writeReg(reg, val)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": I2c.writeReg() failed");
}
}
}
void BMM150::csOn()
{
if (m_gpioCS)
m_gpioCS->write(0);
}
void BMM150::csOff()
{
if (m_gpioCS)
m_gpioCS->write(1);
}
uint8_t BMM150::getChipID()
{
return readReg(REG_CHIP_ID);
}
void BMM150::getMagnetometer(float *x, float *y, float *z)
{
if (x)
*x = m_magX;
if (y)
*y = m_magY;
if (z)
*z = m_magZ;
}
float *BMM150::getMagnetometer()
{
static float v[3];
getMagnetometer(&v[0], &v[1], &v[2]);
return v;
}
void BMM150::reset()
{
// mask off reserved bits
uint8_t reg = readReg(REG_POWER_CTRL) & ~_POWER_CTRL_RESERVED_BITS;
reg |= POWER_CTRL_SOFT_RESET0 | POWER_CTRL_SOFT_RESET1;
writeReg(REG_POWER_CTRL, reg);
sleep(1);
// device will return to SLEEP mode...
}
void BMM150::setOutputDataRate(DATA_RATE_T odr)
{
uint8_t reg = readReg(REG_OPMODE);
reg &= ~(_OPMODE_DATA_RATE_MASK << _OPMODE_DATA_RATE_SHIFT);
reg |= (odr << _OPMODE_DATA_RATE_SHIFT);
writeReg(REG_OPMODE, reg);
}
void BMM150::setPowerBit(bool power)
{
// mask off reserved bits
uint8_t reg = readReg(REG_POWER_CTRL) & ~_POWER_CTRL_RESERVED_BITS;
if (power)
reg |= POWER_CTRL_POWER_CTRL_BIT;
else
reg &= ~POWER_CTRL_POWER_CTRL_BIT;
writeReg(REG_POWER_CTRL, reg);
}
void BMM150::setOpmode(OPERATION_MODE_T opmode)
{
uint8_t reg = readReg(REG_OPMODE);
reg &= ~(_OPMODE_OPERATION_MODE_MASK << _OPMODE_OPERATION_MODE_SHIFT);
reg |= (opmode << _OPMODE_OPERATION_MODE_SHIFT);
writeReg(REG_OPMODE, reg);
m_opmode = opmode;
}
BMM150::OPERATION_MODE_T BMM150::getOpmode()
{
uint8_t reg = readReg(REG_OPMODE);
reg &= (_OPMODE_OPERATION_MODE_MASK << _OPMODE_OPERATION_MODE_SHIFT);
reg >>= _OPMODE_OPERATION_MODE_SHIFT;
return static_cast<OPERATION_MODE_T>(reg);
}
uint8_t BMM150::getInterruptEnable()
{
return readReg(REG_INT_EN);
}
void BMM150::setInterruptEnable(uint8_t bits)
{
writeReg(REG_INT_EN, bits);
}
uint8_t BMM150::getInterruptConfig()
{
return readReg(REG_INT_CONFIG);
}
void BMM150::setInterruptConfig(uint8_t bits)
{
writeReg(REG_INT_CONFIG, bits);
}
uint8_t BMM150::getInterruptStatus()
{
return readReg(REG_INT_STATUS);
}
void BMM150::readTrimData()
{
int bufLen = 10;
uint8_t calibData[bufLen];
// 2 bytes first
readRegs(REG_TRIM_DIG_X1, calibData, 2);
m_dig_x1 = int8_t(calibData[0]);
m_dig_y1 = int8_t(calibData[1]);
// next block of 4 bytes
readRegs(REG_TRIM_DIG_Z4_LSB, calibData, 4);
m_dig_z4 = int16_t((calibData[1] << 8) | calibData[0]);
m_dig_x2 = int8_t(calibData[2]);
m_dig_y2 = int8_t(calibData[3]);
// final block of 10 bytes
readRegs(REG_TRIM_DIG_Z2_LSB, calibData, 10);
m_dig_z2 = int16_t((calibData[1] << 8) | calibData[0]);
m_dig_z1 = uint16_t((calibData[3] << 8) | calibData[2]);
m_dig_xyz1 = uint16_t((calibData[5] << 8) | calibData[4]);
m_dig_z3 = int16_t((calibData[7] << 8) | calibData[6]);
m_dig_xy2 = int8_t(calibData[8]);
m_dig_xy1 = calibData[9];
}
void BMM150::setRepetitionsXY(uint8_t reps)
{
writeReg(REG_REP_XY, reps);
}
void BMM150::setRepetitionsZ(uint8_t reps)
{
writeReg(REG_REP_Z, reps);
}
void BMM150::setPresetMode(USAGE_PRESETS_T usage)
{
// these recommended presets come from the datasheet, Table 3,
// Section 4.2
switch (usage)
{
case USAGE_LOW_POWER:
setRepetitionsXY(3);
setRepetitionsZ(3);
setOutputDataRate(DATA_RATE_10HZ);
break;
case USAGE_REGULAR:
setRepetitionsXY(9);
setRepetitionsZ(15);
setOutputDataRate(DATA_RATE_10HZ);
break;
case USAGE_ENHANCED_REGULAR:
setRepetitionsXY(15);
setRepetitionsZ(27);
setOutputDataRate(DATA_RATE_10HZ);
break;
case USAGE_HIGH_ACCURACY:
setRepetitionsXY(47);
setRepetitionsZ(83);
setOutputDataRate(DATA_RATE_20HZ);
break;
default:
throw std::out_of_range(string(__FUNCTION__) +
": Invalid usage enum passed");
}
}
#if defined(SWIGJAVA) || (JAVACALLBACK)
void BMM150::installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
jobject runnable)
{
// delete any existing ISR and GPIO context
uninstallISR(intr);
// create gpio context
getPin(intr) = new mraa::Gpio(gpio);
getPin(intr)->dir(mraa::DIR_IN);
getPin(intr)->isr(level, runnable);
}
#else
void BMM150::installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg)
{
// delete any existing ISR and GPIO context
uninstallISR(intr);
// create gpio context
getPin(intr) = new mraa::Gpio(gpio);
getPin(intr)->dir(mraa::DIR_IN);
getPin(intr)->isr(level, isr, arg);
}
#endif
void BMM150::uninstallISR(INTERRUPT_PINS_T intr)
{
if (getPin(intr))
{
getPin(intr)->isrExit();
delete getPin(intr);
getPin(intr) = 0;
}
}
mraa::Gpio*& BMM150::getPin(INTERRUPT_PINS_T intr)
{
switch(intr)
{
case INTERRUPT_INT:
return m_gpioIntr;
break;
case INTERRUPT_DR:
return m_gpioDR;
break;
default:
throw std::out_of_range(string(__FUNCTION__) +
": Invalid interrupt enum passed");
}
}
// Bosch compensation functions
float BMM150::bmm050_compensate_X_float(int16_t mag_data_x, uint16_t data_r)
{
float inter_retval = 0;
if (mag_data_x != -4096 /* no overflow */
) {
if ((data_r != 0)
&& (m_dig_xyz1 != 0)) {
inter_retval = ((((float)m_dig_xyz1)
* 16384.0 / data_r) - 16384.0);
} else {
inter_retval = 0.0f;
return inter_retval;
}
inter_retval = (((mag_data_x * ((((((float)m_dig_xy2) *
(inter_retval*inter_retval /
268435456.0) +
inter_retval * ((float)m_dig_xy1)
/ 16384.0)) + 256.0) *
(((float)m_dig_x2) + 160.0)))
/ 8192.0)
+ (((float)m_dig_x1) *
8.0)) / 16.0;
} else {
inter_retval = 0.0f;
}
return inter_retval;
}
float BMM150::bmm050_compensate_Y_float(int16_t mag_data_y, uint16_t data_r)
{
float inter_retval = 0;
if (mag_data_y != -4096 /* no overflow */
) {
if ((data_r != 0)
&& (m_dig_xyz1 != 0)) {
inter_retval = ((((float)m_dig_xyz1)
* 16384.0
/data_r) - 16384.0);
} else {
inter_retval = 0.0f;
return inter_retval;
}
inter_retval = (((mag_data_y * ((((((float)m_dig_xy2) *
(inter_retval*inter_retval
/ 268435456.0) +
inter_retval * ((float)m_dig_xy1)
/ 16384.0)) +
256.0) *
(((float)m_dig_y2) + 160.0)))
/ 8192.0) +
(((float)m_dig_y1) * 8.0))
/ 16.0;
} else {
/* overflow, set output to 0.0f */
inter_retval = 0.0f;
}
return inter_retval;
}
float BMM150::bmm050_compensate_Z_float(int16_t mag_data_z, uint16_t data_r)
{
float inter_retval = 0;
/* no overflow */
if (mag_data_z != -16384) {
if ((m_dig_z2 != 0)
&& (m_dig_z1 != 0)
&& (m_dig_xyz1 != 0)
&& (data_r != 0)) {
inter_retval = ((((((float)mag_data_z)-
((float)m_dig_z4)) * 131072.0)-
(((float)m_dig_z3)*(((float)data_r)
-((float)m_dig_xyz1))))
/((((float)m_dig_z2)+
((float)m_dig_z1)*((float)data_r) /
32768.0) * 4.0)) / 16.0;
}
} else {
/* overflow, set output to 0.0f */
inter_retval = 0.0f;
}
return inter_retval;
}