upm/src/bmm150/bmm150.c
Jon Trulson aeaf84ccc6 bmm150: split into new library, C port, FTI, C++ wraps C
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2017-03-30 16:43:35 -06:00

804 lines
22 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include "upm_utilities.h"
#include "bmm150.h"
// SPI CS on and off functions
static void _csOn(const bmm150_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 0);
}
static void _csOff(const bmm150_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 1);
}
// These trimming algorithms (bmm050_bosch_compensate_*()) are taken
// from the Bosch BMM050 reference driver code. See license.txt.
// Bosch compensation functions
static float _bmm050_compensate_X_float(bmm150_context dev,
int16_t mag_data_x)
{
assert(dev != NULL);
uint16_t data_r = dev->hall;
float inter_retval = 0;
if (mag_data_x != -4096 /* no overflow */
) {
if ((data_r != 0)
&& (dev->dig_xyz1 != 0)) {
inter_retval = ((((float)dev->dig_xyz1)
* 16384.0 / data_r) - 16384.0);
} else {
inter_retval = 0.0f;
return inter_retval;
}
inter_retval = (((mag_data_x * ((((((float)dev->dig_xy2) *
(inter_retval*inter_retval /
268435456.0) +
inter_retval * ((float)dev->dig_xy1)
/ 16384.0)) + 256.0) *
(((float)dev->dig_x2) + 160.0)))
/ 8192.0)
+ (((float)dev->dig_x1) *
8.0)) / 16.0;
} else {
inter_retval = 0.0f;
}
return inter_retval;
}
static float _bmm050_compensate_Y_float(bmm150_context dev,
int16_t mag_data_y)
{
assert(dev != NULL);
uint16_t data_r = dev->hall;
float inter_retval = 0;
if (mag_data_y != -4096 /* no overflow */
) {
if ((data_r != 0)
&& (dev->dig_xyz1 != 0)) {
inter_retval = ((((float)dev->dig_xyz1)
* 16384.0
/data_r) - 16384.0);
} else {
inter_retval = 0.0f;
return inter_retval;
}
inter_retval = (((mag_data_y * ((((((float)dev->dig_xy2) *
(inter_retval*inter_retval
/ 268435456.0) +
inter_retval * ((float)dev->dig_xy1)
/ 16384.0)) +
256.0) *
(((float)dev->dig_y2) + 160.0)))
/ 8192.0) +
(((float)dev->dig_y1) * 8.0))
/ 16.0;
} else {
/* overflow, set output to 0.0f */
inter_retval = 0.0f;
}
return inter_retval;
}
static float _bmm050_compensate_Z_float(bmm150_context dev,
int16_t mag_data_z)
{
assert(dev != NULL);
uint16_t data_r = dev->hall;
float inter_retval = 0;
/* no overflow */
if (mag_data_z != -16384) {
if ((dev->dig_z2 != 0)
&& (dev->dig_z1 != 0)
&& (dev->dig_xyz1 != 0)
&& (data_r != 0)) {
inter_retval = ((((((float)mag_data_z)-
((float)dev->dig_z4)) * 131072.0)-
(((float)dev->dig_z3)*(((float)data_r)
-((float)dev->dig_xyz1))))
/((((float)dev->dig_z2)+
((float)dev->dig_z1)*((float)data_r) /
32768.0) * 4.0)) / 16.0;
}
} else {
/* overflow, set output to 0.0f */
inter_retval = 0.0f;
}
return inter_retval;
}
// read trim data
static upm_result_t _bmm150_read_trim_data(const bmm150_context dev)
{
assert(dev != NULL);
int bufLen = 10;
uint8_t calibData[bufLen];
// 2 bytes first
if (bmm150_read_regs(dev, BMM150_REG_TRIM_DIG_X1, calibData, 2) != 2)
return UPM_ERROR_OPERATION_FAILED;
dev->dig_x1 = (int8_t)calibData[0];
dev->dig_y1 = (int8_t)calibData[1];
// next block of 4 bytes
if (bmm150_read_regs(dev, BMM150_REG_TRIM_DIG_Z4_LSB, calibData, 4) != 4)
return UPM_ERROR_OPERATION_FAILED;
dev->dig_z4 = (int16_t)((calibData[1] << 8) | calibData[0]);
dev->dig_x2 = (int8_t)calibData[2];
dev->dig_y2 = (int8_t)calibData[3];
// final block of 10 bytes
if (bmm150_read_regs(dev, BMM150_REG_TRIM_DIG_Z2_LSB, calibData, 10) != 10)
return UPM_ERROR_OPERATION_FAILED;
dev->dig_z2 = (int16_t)((calibData[1] << 8) | calibData[0]);
dev->dig_z1 = (uint16_t)((calibData[3] << 8) | calibData[2]);
dev->dig_xyz1 = (uint16_t)((calibData[5] << 8) | calibData[4]);
dev->dig_z3 = (int16_t)((calibData[7] << 8) | calibData[6]);
dev->dig_xy2 = (int8_t)calibData[8];
dev->dig_xy1 = calibData[9];
return UPM_SUCCESS;
}
// init
bmm150_context bmm150_init(int bus, int addr, int cs)
{
bmm150_context dev =
(bmm150_context)malloc(sizeof(struct _bmm150_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _bmm150_context));
// make sure MRAA is initialized
if (mraa_init() != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
if (addr < 0)
dev->isSPI = true;
if (dev->isSPI)
{
if (!(dev->spi = mraa_spi_init(bus)))
{
printf("%s: mraa_spi_init() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs >= 0)
{
if (!(dev->gpioCS = mraa_gpio_init(cs)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
mraa_gpio_dir(dev->gpioCS, MRAA_GPIO_OUT);
}
mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
if (mraa_spi_frequency(dev->spi, 5000000))
{
printf("%s: mraa_spi_frequency() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
}
else
{
// I2C
if (!(dev->i2c = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, addr))
{
printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
}
// power bit must be on for chip ID to be accessible
bmm150_set_power_bit(dev, true);
// not really, just need to set it to something valid until
// bmm150_set_opmode() is called in bmm150_devinit().
dev->opmode = BMM150_OPERATION_MODE_SLEEP;
upm_delay_ms(50);
// check the chip id
uint8_t chipID = bmm150_get_chip_id(dev);
if (chipID != BMM150_DEFAULT_CHIPID)
{
printf("%s: invalid chip id: %02x. Expected %02x\n",
__FUNCTION__, chipID, BMM150_DEFAULT_CHIPID);
bmm150_close(dev);
return NULL;
}
// call devinit with a default high resolution mode
if (bmm150_devinit(dev, BMM150_USAGE_HIGH_ACCURACY))
{
printf("%s: bmm150_devinit() failed.\n", __FUNCTION__);
bmm150_close(dev);
return NULL;
}
return dev;
}
void bmm150_close(bmm150_context dev)
{
assert(dev != NULL);
bmm150_uninstall_isr(dev, BMM150_INTERRUPT_INT);
bmm150_uninstall_isr(dev, BMM150_INTERRUPT_DR);
if (dev->i2c)
mraa_i2c_stop(dev->i2c);
if (dev->spi)
mraa_spi_stop(dev->spi);
if (dev->gpioCS)
mraa_gpio_close(dev->gpioCS);
free(dev);
}
upm_result_t bmm150_devinit(const bmm150_context dev,
BMM150_USAGE_PRESETS_T usage)
{
assert(dev != NULL);
// just in case...
if (bmm150_set_power_bit(dev, true))
{
printf("%s: bmm150_set_power_bit() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// get trim data
if (_bmm150_read_trim_data(dev))
{
printf("%s: _bmm150_read_trim_data() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
if (bmm150_set_opmode(dev, BMM150_OPERATION_MODE_NORMAL))
{
printf("%s: bmm150_set_opmode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(50); // 50ms, in case we are waking up
if (bmm150_set_preset_mode(dev, usage))
{
printf("%s: bmm150_set_preset_mode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// settle
upm_delay_ms(50);
return UPM_SUCCESS;
}
upm_result_t bmm150_update(const bmm150_context dev)
{
assert(dev != NULL);
// special care when in a forced mode - need to trigger a
// measurement, and wait for the opmode to return to OPMODE_SLEEP,
// then we can read the values.
if (dev->opmode == BMM150_OPERATION_MODE_FORCED)
{
// trigger measurement
if (bmm150_set_opmode(dev, BMM150_OPERATION_MODE_FORCED))
{
printf("%s: bmm150_set_opmode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// opmode will return to BMM150_OPERATION_MODE_SLEEP after
// measurement is complete
do {
upm_delay_ms(5);
} while (bmm150_get_opmode(dev) == BMM150_OPERATION_MODE_FORCED);
}
const int bufLen = 8;
uint8_t buf[bufLen];
if (bmm150_read_regs(dev, BMM150_REG_MAG_X_LSB, buf, bufLen) != bufLen)
{
printf("%s: bmm150_read_regs() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// we need to get the hall data first, since it's needed for the
// bosch compensation functions for each of the xyz axes
dev->hall = (uint16_t)(buf[7] << 8 | (buf[6] &
(_BMM150_MAG_RHALL_LSB_LSB_MASK <<
_BMM150_MAG_RHALL_LSB_LSB_SHIFT)));
dev->hall /= 4;
int16_t val;
// x
val = (int16_t)(buf[1] << 8 | (buf[0] & (_BMM150_MAG_XY_LSB_LSB_MASK <<
_BMM150_MAG_XY_LSB_LSB_SHIFT)));
val /= 8;
dev->magX = _bmm050_compensate_X_float(dev, val);
// y
val = (int16_t)(buf[3] << 8 | (buf[2] & (_BMM150_MAG_XY_LSB_LSB_MASK <<
_BMM150_MAG_XY_LSB_LSB_SHIFT)));
val /= 8;
dev->magY = _bmm050_compensate_Y_float(dev, val);
// z
val = (int16_t)(buf[5] << 8 | (buf[4] & (_BMM150_MAG_Z_LSB_LSB_MASK <<
_BMM150_MAG_Z_LSB_LSB_SHIFT)));
val /= 2;
dev->magZ = _bmm050_compensate_Z_float(dev, val);
return UPM_SUCCESS;
}
uint8_t bmm150_read_reg(const bmm150_context dev, uint8_t reg)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t pkt[2] = {reg, 0};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, pkt, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return 0xff;
}
_csOff(dev);
return pkt[1];
}
else
return (uint8_t)mraa_i2c_read_byte_data(dev->i2c, reg);
}
int bmm150_read_regs(const bmm150_context dev, uint8_t reg,
uint8_t *buffer, int len)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t sbuf[len + 1];
memset((char *)sbuf, 0, len + 1);
sbuf[0] = reg;
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return -1;
}
_csOff(dev);
// now copy it into user buffer
for (int i=0; i<len; i++)
buffer[i] = sbuf[i + 1];
}
else
{
if (mraa_i2c_read_bytes_data(dev->i2c, reg, buffer, len) != len)
return -1;
}
return len;
}
upm_result_t bmm150_write_reg(const bmm150_context dev,
uint8_t reg, uint8_t val)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg &= 0x7f; // mask off 0x80 for writing
uint8_t pkt[2] = {reg, val};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, NULL, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
_csOff(dev);
}
else
{
if (mraa_i2c_write_byte_data(dev->i2c, val, reg))
{
printf("%s: mraa_i2c_write_byte_data() failed.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
return UPM_SUCCESS;
}
uint8_t bmm150_get_chip_id(const bmm150_context dev)
{
assert(dev != NULL);
return bmm150_read_reg(dev, BMM150_REG_CHIP_ID);
}
void bmm150_get_magnetometer(const bmm150_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = dev->magX;
if (y)
*y = dev->magY;
if (z)
*z = dev->magZ;
}
upm_result_t bmm150_reset(const bmm150_context dev)
{
assert(dev != NULL);
// mask off reserved bits
uint8_t reg =
(bmm150_read_reg(dev, BMM150_REG_POWER_CTRL)
& ~_BMM150_POWER_CTRL_RESERVED_BITS);
reg |= BMM150_POWER_CTRL_SOFT_RESET0 | BMM150_POWER_CTRL_SOFT_RESET1;
if (bmm150_write_reg(dev, BMM150_REG_POWER_CTRL, reg))
return UPM_ERROR_OPERATION_FAILED;
upm_delay(1);
// device will return to SLEEP mode...
return UPM_SUCCESS;
}
upm_result_t bmm150_set_output_data_rate(const bmm150_context dev,
BMM150_DATA_RATE_T odr)
{
assert(dev != NULL);
uint8_t reg = bmm150_read_reg(dev, BMM150_REG_OPMODE);
reg &= ~(_BMM150_OPMODE_DATA_RATE_MASK << _BMM150_OPMODE_DATA_RATE_SHIFT);
reg |= (odr << _BMM150_OPMODE_DATA_RATE_SHIFT);
if (bmm150_write_reg(dev, BMM150_REG_OPMODE, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmm150_set_power_bit(const bmm150_context dev, bool power)
{
assert(dev != NULL);
// mask off reserved bits
uint8_t reg =
(bmm150_read_reg(dev, BMM150_REG_POWER_CTRL)
& ~_BMM150_POWER_CTRL_RESERVED_BITS);
if (power)
reg |= BMM150_POWER_CTRL_POWER_CTRL_BIT;
else
reg &= ~BMM150_POWER_CTRL_POWER_CTRL_BIT;
if (bmm150_write_reg(dev, BMM150_REG_POWER_CTRL, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmm150_set_opmode(const bmm150_context dev,
BMM150_OPERATION_MODE_T opmode)
{
assert(dev != NULL);
uint8_t reg = bmm150_read_reg(dev, BMM150_REG_OPMODE);
reg &= ~(_BMM150_OPMODE_OPERATION_MODE_MASK
<< _BMM150_OPMODE_OPERATION_MODE_SHIFT);
reg |= (opmode << _BMM150_OPMODE_OPERATION_MODE_SHIFT);
if (bmm150_write_reg(dev, BMM150_REG_OPMODE, reg))
return UPM_ERROR_OPERATION_FAILED;
dev->opmode = opmode;
return UPM_SUCCESS;
}
BMM150_OPERATION_MODE_T bmm150_get_opmode(const bmm150_context dev)
{
assert(dev != NULL);
uint8_t reg = bmm150_read_reg(dev, BMM150_REG_OPMODE);
reg &= (_BMM150_OPMODE_OPERATION_MODE_MASK
<< _BMM150_OPMODE_OPERATION_MODE_SHIFT);
reg >>= _BMM150_OPMODE_OPERATION_MODE_SHIFT;
return (BMM150_OPERATION_MODE_T)reg;
}
uint8_t bmm150_get_interrupt_enable(const bmm150_context dev)
{
assert(dev != NULL);
return bmm150_read_reg(dev, BMM150_REG_INT_EN);
}
upm_result_t bmm150_set_interrupt_enable(const bmm150_context dev,
uint8_t bits)
{
assert(dev != NULL);
if (bmm150_write_reg(dev, BMM150_REG_INT_EN, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmm150_get_interrupt_config(const bmm150_context dev)
{
assert(dev != NULL);
return bmm150_read_reg(dev, BMM150_REG_INT_CONFIG);
}
upm_result_t bmm150_set_interrupt_config(const bmm150_context dev,
uint8_t bits)
{
assert(dev != NULL);
if (bmm150_write_reg(dev, BMM150_REG_INT_CONFIG, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmm150_get_interrupt_status(const bmm150_context dev)
{
assert(dev != NULL);
return bmm150_read_reg(dev, BMM150_REG_INT_STATUS);
}
upm_result_t bmm150_set_repetitions_xy(const bmm150_context dev,
uint8_t reps)
{
assert(dev != NULL);
if (bmm150_write_reg(dev, BMM150_REG_REP_XY, reps))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmm150_set_repetitions_z(const bmm150_context dev,
uint8_t reps)
{
assert(dev != NULL);
if (bmm150_write_reg(dev, BMM150_REG_REP_Z, reps))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmm150_set_preset_mode(const bmm150_context dev,
BMM150_USAGE_PRESETS_T usage)
{
assert(dev != NULL);
bool error = false;
// these recommended presets come from the datasheet, Table 3,
// Section 4.2
switch (usage)
{
case BMM150_USAGE_LOW_POWER:
if (bmm150_set_repetitions_xy(dev, 3)
|| bmm150_set_repetitions_z(dev, 3)
|| bmm150_set_output_data_rate(dev, BMM150_DATA_RATE_10HZ))
error = true;
break;
case BMM150_USAGE_REGULAR:
if (bmm150_set_repetitions_xy(dev, 9)
|| bmm150_set_repetitions_z(dev, 15)
|| bmm150_set_output_data_rate(dev, BMM150_DATA_RATE_10HZ))
error = true;
break;
case BMM150_USAGE_ENHANCED_REGULAR:
if (bmm150_set_repetitions_xy(dev, 15)
|| bmm150_set_repetitions_z(dev, 27)
|| bmm150_set_output_data_rate(dev, BMM150_DATA_RATE_10HZ))
error = true;
break;
case BMM150_USAGE_HIGH_ACCURACY:
if (bmm150_set_repetitions_xy(dev, 47)
|| bmm150_set_repetitions_z(dev, 83)
|| bmm150_set_output_data_rate(dev, BMM150_DATA_RATE_20HZ))
error = true;
break;
default:
printf("%s: Invalid usage value passed.\n", __FUNCTION__);
error = true;
}
if (error)
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmm150_install_isr(const bmm150_context dev,
BMM150_INTERRUPT_PINS_T intr, int gpio,
mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
assert(dev != NULL);
// delete any existing ISR and GPIO context for this interrupt
bmm150_uninstall_isr(dev, intr);
mraa_gpio_context gpio_isr = NULL;
// create gpio context
if (!(gpio_isr = mraa_gpio_init(gpio)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_dir(gpio_isr, MRAA_GPIO_IN);
if (mraa_gpio_isr(gpio_isr, level, isr, arg))
{
mraa_gpio_close(gpio_isr);
printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
switch (intr)
{
case BMM150_INTERRUPT_INT:
dev->gpioINT = gpio_isr;
break;
case BMM150_INTERRUPT_DR:
dev->gpioDR = gpio_isr;
break;
}
return UPM_SUCCESS;
}
void bmm150_uninstall_isr(const bmm150_context dev,
BMM150_INTERRUPT_PINS_T intr)
{
assert(dev != NULL);
switch (intr)
{
case BMM150_INTERRUPT_INT:
if (dev->gpioINT)
{
mraa_gpio_isr_exit(dev->gpioINT);
mraa_gpio_close(dev->gpioINT);
dev->gpioINT = NULL;
}
break;
case BMM150_INTERRUPT_DR:
if (dev->gpioDR)
{
mraa_gpio_isr_exit(dev->gpioDR);
mraa_gpio_close(dev->gpioDR);
dev->gpioDR = NULL;
}
break;
}
}