upm/src/nrf24l01/nrf24l01.cxx
Andrei Vasiliu ab730038fd java: changed some C types to C++ types
Signed-off-by: Andrei Vasiliu <andrei.vasiliu@intel.com>
Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>

Conflicts:
	src/mma7455/mma7455.cxx
	src/mma7455/mma7455.h
	src/sm130/sm130.cxx
	src/sm130/sm130.h
2015-09-15 16:52:36 -07:00

508 lines
12 KiB
C++

/*
* Author: Yevgeniy Kiveisha <yevgeniy.kiveisha@intel.com>
* Copyright (c) 2014 Intel Corporation.
* BLE Beaconing based on http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <unistd.h>
#include <stdlib.h>
#include "nrf24l01.h"
using namespace upm;
NRF24L01::NRF24L01 (uint8_t cs, uint8_t ce)
: m_csnPinCtx(cs), m_cePinCtx(ce), m_spi(0)
{
mraa::init();
init (cs, ce);
}
void
NRF24L01::init (uint8_t chip_select, uint8_t chip_enable) {
mraa::Result error = mraa::SUCCESS;
m_csn = chip_select;
m_ce = chip_enable;
m_channel = 99;
error = m_csnPinCtx.dir(mraa::DIR_OUT);
if (error != mraa::SUCCESS) {
mraa::printError (error);
}
error = m_cePinCtx.dir(mraa::DIR_OUT);
if (error != mraa::SUCCESS) {
mraa::printError (error);
}
ceLow();
csOff ();
}
void
NRF24L01::configure () {
/* Set RF channel */
setRegister (RF_CH, m_channel);
/* Set length of incoming payload */
setRegister (RX_PW_P0, m_payload);
/* Set length of incoming payload for broadcast */
setRegister (RX_PW_P1, m_payload);
/* Start receiver */
rxPowerUp ();
rxFlushBuffer ();
}
void
NRF24L01::send (uint8_t * value) {
uint8_t status;
status = getStatus();
while (m_ptx) {
status = getStatus();
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
m_ptx = 0;
break;
}
} // Wait until last paket is send
ceLow ();
txPowerUp (); // Set to transmitter mode , Power up
txFlushBuffer ();
csOn ();
m_spi.writeByte(W_TX_PAYLOAD); // Write cmd to write payload
writeBytes (value, NULL, m_payload); // Write payload
csOff ();
ceHigh(); // Start transmission
while (dataSending ()) { }
usleep (10000);
}
void
NRF24L01::send () {
send (m_txBuffer);
}
void
NRF24L01::setSourceAddress (uint8_t * addr) {
ceLow ();
writeRegister (RX_ADDR_P0, addr, ADDR_LEN);
ceHigh ();
}
void
NRF24L01::setDestinationAddress (uint8_t * addr) {
writeRegister (TX_ADDR, addr, ADDR_LEN);
}
void
NRF24L01::setBroadcastAddress (uint8_t * addr) {
writeRegister (RX_ADDR_P1, addr, ADDR_LEN);
}
void
NRF24L01::setPayload (uint8_t payload) {
m_payload = payload;
}
bool
NRF24L01::dataReady () {
/* See note in getData() function - just checking RX_DR isn't good enough */
uint8_t status = getStatus();
/* We can short circuit on RX_DR, but if it's not set, we still need
* to check the FIFO for any pending packets */
if ( status & (1 << RX_DR) ) {
return 1;
}
return !rxFifoEmpty();
}
bool
NRF24L01::dataSending () {
uint8_t status;
if(m_ptx) { // Sending mode.
status = getStatus();
/* if sending successful (TX_DS) or max retries exceded (MAX_RT). */
if((status & ((1 << TX_DS) | (1 << MAX_RT)))){
rxPowerUp ();
return false;
}
return true;
}
return false;
}
void
NRF24L01::getData (uint8_t * data) {
csOn ();
/* Send cmd to read rx payload */
m_spi.writeByte(R_RX_PAYLOAD);
/* Read payload */
writeBytes (data, data, m_payload);
csOff ();
/* NVI: per product spec, p 67, note c:
* "The RX_DR IRQ is asserted by a new packet arrival event. The procedure
* for handling this interrupt should be: 1) read payload through SPI,
* 2) clear RX_DR IRQ, 3) read FIFO_STATUS to check if there are more
* payloads available in RX FIFO, 4) if there are more data in RX FIFO,
* repeat from step 1)."
* So if we're going to clear RX_DR here, we need to check the RX FIFO
* in the dataReady() function */
/* Reset status register */
setRegister (STATUS, (1<<RX_DR));
}
uint8_t
NRF24L01::getStatus() {
return getRegister (STATUS);
}
bool
NRF24L01::rxFifoEmpty () {
uint8_t fifoStatus = getRegister (FIFO_STATUS);
return (fifoStatus & (1 << RX_EMPTY));
}
void
NRF24L01::rxPowerUp () {
m_ptx = 0;
ceLow ();
setRegister (CONFIG, _CONFIG | ( (1 << PWR_UP) | (1 << PRIM_RX) ));
ceHigh ();
setRegister (STATUS, (1 << TX_DS) | (1 << MAX_RT));
}
void
NRF24L01::rxFlushBuffer () {
sendCommand (FLUSH_RX);
}
void
NRF24L01::txPowerUp () {
m_ptx = 1;
setRegister (CONFIG, _CONFIG | ( (1 << PWR_UP) | (0 << PRIM_RX) ));
}
void
NRF24L01::powerDown(){
ceLow ();
setRegister (CONFIG, _CONFIG);
}
void
NRF24L01::setChannel (uint8_t channel) {
m_channel = channel;
setRegister (RF_CH, channel);
}
void
NRF24L01::setPower (power_t power) {
uint8_t setupRegisterData = 0;
switch (power) {
case NRF_0DBM:
m_power = 3;
break;
case NRF_6DBM:
m_power = 2;
break;
case NRF_12DBM:
m_power = 1;
break;
case NRF_18DBM:
m_power = 0;
break;
}
setupRegisterData = getRegister (RF_SETUP); // Read current value.
setupRegisterData &= 0xFC; // Erase the old value;
setupRegisterData |= (m_power & 0x3);
setRegister (RF_SETUP, setupRegisterData); // Write the new value.
}
uint8_t
NRF24L01::setSpeedRate (speed_rate_t rate) {
uint8_t setupRegisterData = 0;
setupRegisterData = getRegister (RF_SETUP); // Read current value.
setupRegisterData &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));
switch (rate) {
case NRF_250KBPS:
setupRegisterData |= (1 << RF_DR_LOW) ;
break;
case NRF_1MBPS:
break;
case NRF_2MBPS:
setupRegisterData |= (1 << RF_DR_HIGH);
break;
}
setRegister (RF_SETUP, setupRegisterData); // Write the new value.
if (setupRegisterData == getRegister (RF_SETUP)) {
return 0x0;
}
return 0x1;
}
mraa::Result
NRF24L01::ceHigh () {
return m_cePinCtx.write(HIGH);
}
mraa::Result
NRF24L01::ceLow () {
return m_cePinCtx.write(LOW);
}
mraa::Result
NRF24L01::csOn () {
return m_csnPinCtx.write(LOW);
}
mraa::Result
NRF24L01::csOff () {
return m_csnPinCtx.write(HIGH);
}
void
NRF24L01::pollListener() {
if (dataReady()) {
getData (m_rxBuffer);
dataRecievedHandler (); /* let know that data arrived */
}
}
void
NRF24L01::txFlushBuffer () {
sendCommand (FLUSH_TX);
}
void
NRF24L01::setBeaconingMode () {
setRegister (CONFIG, 0x12); // on, no crc, int on RX/TX done
setRegister (EN_AA, 0x00); // no auto-acknowledge
setRegister (EN_RXADDR, 0x00); // no RX
setRegister (SETUP_AW, 0x02); // 5-byte address
setRegister (SETUP_RETR, 0x00); // no auto-retransmit
setRegister (RF_SETUP, 0x06); // 1MBps at 0dBm
setRegister (STATUS, 0x3E); // clear various flags
setRegister (DYNPD, 0x00); // no dynamic payloads
setRegister (FEATURE, 0x00); // no features
setRegister (RX_PW_P0, 32); // always RX 32 bytes
setRegister (EN_RXADDR, 0x01); // RX on pipe 0
uint8_t addr[4] = { swapbits(0x8E), swapbits(0x89), swapbits(0xBE), swapbits(0xD6)};
writeRegister (TX_ADDR, addr, 4);
writeRegister (RX_ADDR_P0, addr, 4);
uint8_t index = 0;
m_bleBuffer[index++] = 0x42; // PDU type, given address is random
m_bleBuffer[index++] = 0x1B; // 6+3+2+16 = 27 bytes of payload
m_bleBuffer[index++] = BLE_MAC_0;
m_bleBuffer[index++] = BLE_MAC_1;
m_bleBuffer[index++] = BLE_MAC_2;
m_bleBuffer[index++] = BLE_MAC_3;
m_bleBuffer[index++] = BLE_MAC_4;
m_bleBuffer[index++] = BLE_MAC_5;
m_bleBuffer[index++] = 2; // flags (LE-only, limited discovery mode)
m_bleBuffer[index++] = 0x01;
m_bleBuffer[index++] = 0x05;
m_bleBuffer[index++] = 17;
m_bleBuffer[index++] = 0x08;
}
void
NRF24L01::sendBeaconingMsg (uint8_t * msg) {
const uint8_t chRf[] = {2, 26,80};
const uint8_t chLe[] = {37,38,39};
uint8_t index = BLE_PAYLOAD_OFFSET + 16;
memcpy (&m_bleBuffer[BLE_PAYLOAD_OFFSET], msg, 16);
m_bleBuffer[index++] = 0x55;
m_bleBuffer[index++] = 0x55;
m_bleBuffer[index++] = 0x55;
uint8_t channel = 0;
while (++channel != sizeof(chRf)) {
setRegister (RF_CH, chRf[channel]);
setRegister (STATUS, 0x6E); //clear flags
blePacketEncode (m_bleBuffer, index, chLe[channel]);
sendCommand (FLUSH_TX); // Clear RX Fifo
sendCommand (FLUSH_RX); // Clear TX Fifo
csOn ();
m_spi.writeByte(W_TX_PAYLOAD); // Write cmd to write payload
writeBytes (m_bleBuffer, NULL, 32); // Write payload
csOff ();
setRegister (CONFIG, 0x12); // tx on
ceHigh (); // Start transmission
usleep (10000);
ceLow ();
}
}
/*
* ---------------
* PRIVATE SECTION
* ---------------
*/
void
NRF24L01::writeBytes (uint8_t * dataout, uint8_t * datain, uint8_t len) {
for (uint8_t i = 0; i < len; i++) {
if (datain != NULL) {
datain[i] = m_spi.writeByte(dataout[i]);
} else {
m_spi.writeByte(dataout[i]);
}
}
}
void
NRF24L01::setRegister (uint8_t reg, uint8_t value) {
csOn ();
m_spi.writeByte(W_REGISTER | (REGISTER_MASK & reg));
m_spi.writeByte(value);
csOff ();
}
uint8_t
NRF24L01::getRegister (uint8_t reg) {
uint8_t data = 0;
csOn ();
m_spi.writeByte(R_REGISTER | (REGISTER_MASK & reg));
data = m_spi.writeByte(data);
csOff ();
return data;
}
void
NRF24L01::readRegister (uint8_t reg, uint8_t * value, uint8_t len) {
csOn ();
m_spi.writeByte(R_REGISTER | (REGISTER_MASK & reg));
writeBytes (value, value, len);
csOff ();
}
void
NRF24L01::writeRegister (uint8_t reg, uint8_t * value, uint8_t len) {
csOn ();
m_spi.writeByte(W_REGISTER | (REGISTER_MASK & reg));
writeBytes (value, NULL, len);
csOff ();
}
void
NRF24L01::sendCommand (uint8_t cmd) {
csOn ();
m_spi.writeByte(cmd);
csOff ();
}
void
NRF24L01::bleCrc (const uint8_t* data, uint8_t len, uint8_t* dst) {
uint8_t v, t, d;
while(len--) {
d = *data++;
for(v = 0; v < 8; v++, d >>= 1){
t = dst[0] >> 7;
dst[0] <<= 1;
if(dst[1] & 0x80) dst[0] |= 1;
dst[1] <<= 1;
if(dst[2] & 0x80) dst[1] |= 1;
dst[2] <<= 1;
if(t != (d & 1)) {
dst[2] ^= 0x5B;
dst[1] ^= 0x06;
}
}
}
}
void
NRF24L01::bleWhiten (uint8_t* data, uint8_t len, uint8_t whitenCoeff) {
uint8_t m;
while(len--) {
for(m = 1; m; m <<= 1) {
if(whitenCoeff & 0x80){
whitenCoeff ^= 0x11;
(*data) ^= m;
}
whitenCoeff <<= 1;
}
data++;
}
}
void
NRF24L01::blePacketEncode(uint8_t* packet, uint8_t len, uint8_t chan) {
//length is of packet, including crc. pre-populate crc in packet with initial crc value!
uint8_t i, dataLen = len - 3;
bleCrc(packet, dataLen, packet + dataLen);
for(i = 0; i < 3; i++, dataLen++) {
packet[dataLen] = swapbits(packet[dataLen]);
}
bleWhiten(packet, len, (swapbits(chan) | 2));
for(i = 0; i < len; i++) {
packet[i] = swapbits(packet[i]);
}
}
uint8_t
NRF24L01::swapbits(uint8_t a) {
uint8_t v = 0;
if(a & 0x80) v |= 0x01;
if(a & 0x40) v |= 0x02;
if(a & 0x20) v |= 0x04;
if(a & 0x10) v |= 0x08;
if(a & 0x08) v |= 0x10;
if(a & 0x04) v |= 0x20;
if(a & 0x02) v |= 0x40;
if(a & 0x01) v |= 0x80;
return v;
}