Files
upm/src/l3gd20/l3gd20.hpp
Noel Eck 5cefe7f5f3 examples: Remove heap allocation from C++ examples
Cleanup of UPM C++ examples.  Switched from heap allocation to
stack allocation when possible.  This simplifies the samples since it
removes the need for explicit memory management.  A script was used to
identify and replace pointer use.  To simplify the replace script, I
re-formatted the C++ examples using the UPM .clang-format file.
Unfortuantely this changes the look of the UPM C++ examples to a large
degree.  However, examples will now have a standard look/feel and
uniform formatting.

    * Ran clang-format w/provided UPM .clang-format file
    * Removed new's/delete's whenever possible (left those in interface
      examples)
    * Added IIO sensor library implementation of callback void* arg
    * Converted all sleeps to upm defined delays (added header when
      necessary)
    * Scrubbed CXX example includes

Signed-off-by: Noel Eck <noel.eck@intel.com>
2017-09-19 12:41:58 -07:00

713 lines
22 KiB
C++

/*
* Author: Lay, Kuan Loon <kuan.loon.lay@intel.com>
* Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Thanks to https://github.com/01org/android-iio-sensors-hal for gyroscope
* calibration and denoise algorithm.
*/
#pragma once
#include <string>
#include <mraa/iio.h>
#include <mraa/i2c.hpp>
#define L3GD20_DEFAULT_I2C_BUS 0
// if SDO tied to GND
#define L3GD20_DEFAULT_I2C_ADDR 0x6a
#define L3GD20_DEFAULT_CHIP_ID 0xd4
// the 'H' variant uses a different chip id
#define L3GD20H_DEFAULT_CHIP_ID 0xd7
namespace upm
{
/**
* @brief L3GD20 Tri-axis Digital Gyroscope
* @defgroup l3gd20 libupm-l3gd20
* @ingroup stmicro iio i2c tri-axis digital gyroscope
*/
/**
* @library l3gd20
* @sensor l3gd20
* @comname Tri-axis Digital Gyroscope
* @type gyroscope
* @man stmicro
* @con iio i2c
* @web http://www.st.com/en/mems-and-sensors/l3gd20.html
*
* @brief L3GD20 Tri-axis Digital Gyroscope API
*
* The L3GD20 The L3GD20 is a low-power three-axis angular rate
* sensor. This driver supports IIO and I2C modes. Some methods will
* only work in one mode or the other. See the documentation on the
* methods to determine whether a given method is operation in a given
* mode. Both the I2C and IIO mechanisms make use of the calibration and
* denoise algorithms.
*
* For I2C mode, not all capabilities of the device are supported, but
* a complete register map and low level read/write methods are
* provided to add any missing functionality.
*
* Example using IIO
* @snippet l3gd20.cxx Interesting
* Example using I2C
* @snippet l3gd20-i2c.cxx Interesting
*/
class L3GD20
{
public:
typedef struct {
float bias_x, bias_y, bias_z;
int count;
float min_x, min_y, min_z;
float max_x, max_y, max_z;
} gyro_cal_t;
typedef struct {
float* buff;
unsigned int idx;
unsigned int count;
unsigned int sample_size;
} filter_median_t;
// NOTE: Reserved registers must not be written into or permanent
// device damage can result. Reading from them may return
// indeterminate values. Registers containing reserved bitfields
// must be written as 0. Reading reserved bitfields may return
// indeterminate values.
/**
* L3GD20 registers (i2c)
*/
typedef enum {
// 0x00-0x0e reserved
REG_WHO_AM_I = 0x0f,
// 0x10-0x1f reserved
REG_CTRL_REG1 = 0x20,
REG_CTRL_REG2 = 0x21,
REG_CTRL_REG3 = 0x22,
REG_CTRL_REG4 = 0x23,
REG_CTRL_REG5 = 0x24,
REG_REFERENCE = 0x25,
REG_OUT_TEMPERATURE = 0x26,
REG_STATUS_REG = 0x27,
// output registers (also for FIFO output)
REG_OUT_X_L = 0x28,
REG_OUT_X_H = 0x29,
REG_OUT_Y_L = 0x2a,
REG_OUT_Y_H = 0x2b,
REG_OUT_Z_L = 0x2c,
REG_OUT_Z_H = 0x2d,
REG_FIFO_CTRL_REG = 0x2e,
REG_FIFO_SRC_REG = 0x2f,
REG_INT1_CFG = 0x30,
REG_INT1_SRC = 0x31,
REG_INT1_TSH_XH = 0x32,
REG_INT1_TSH_XL = 0x33,
REG_INT1_TSH_YH = 0x34,
REG_INT1_TSH_YL = 0x35,
REG_INT1_TSH_ZH = 0x36,
REG_INT1_TSH_ZL = 0x37,
REG_INT1_DURATION = 0x38
} L3GD20_REGS_T;
/**
* CTRL_REG1 bits
*/
typedef enum {
CTRL_REG1_YEN = 0x01,
CTRL_REG1_XEN = 0x02,
CTRL_REG1_ZEN = 0x04,
CTRL_REG1_PD = 0x08,
CTRL_REG1_BW0 = 0x10, // bandwidth
CTRL_REG1_BW1 = 0x20,
_CTRL_REG1_BW_MASK = 3,
_CTRL_REG1_BW_SHIFT = 4,
CTRL_REG1_DR0 = 0x40, // data rate
CTRL_REG1_DR1 = 0x80,
_CTRL_REG1_DR_MASK = 3,
_CTRL_REG1_DR_SHIFT = 6,
// together the BW and DR modes represent an output data rate
// (ODR) and a filter cut-off. So here, we will create a 'fake'
// bitfield that can be used directly with the ODR_CUTOFF enum
_CTRL_REG1_ODR_CUTOFF0 = 0x10,
_CTRL_REG1_ODR_CUTOFF1 = 0x20,
_CTRL_REG1_ODR_CUTOFF2 = 0x40,
_CTRL_REG1_ODR_CUTOFF3 = 0x80,
_CTRL_REG1_ODR_CUTOFF_MASK = 15,
_CTRL_REG1_ODR_CUTOFF_SHIFT = 4
} CTRL_REG1_BITS_T;
/**
* CTRL_REG1_ODR_CUTOFF values
*/
typedef enum {
ODR_CUTOFF_95_12_5 = 0, // ODR 95Hz, CO 12.5
ODR_CUTOFF_95_25 = 1, // ODR 95Hz, CO 25
// 2 and 3 same as 1
ODR_CUTOFF_190_12_5 = 4,
ODR_CUTOFF_190_25 = 5,
ODR_CUTOFF_190_50 = 6,
ODR_CUTOFF_190_70 = 7,
ODR_CUTOFF_380_20 = 8,
ODR_CUTOFF_380_25 = 9,
ODR_CUTOFF_380_50 = 10,
ODR_CUTOFF_380_100 = 11,
ODR_CUTOFF_760_30 = 12,
ODR_CUTOFF_760_35 = 13,
ODR_CUTOFF_760_50 = 14,
ODR_CUTOFF_760_100 = 15
} ODR_CUTOFF_T;
/**
* CTRL_REG1 power modes. Power is controlled via the PD, Zen,
* Yen, and Xen bitfields.
*/
typedef enum {
POWER_DOWN,
POWER_SLEEP,
POWER_NORMAL
} POWER_MODES_T;
/**
* CTRL_REG2 bits
*/
typedef enum {
_CTRL_REG2_RESERVED_BITS = 0x40 | 0x80,
CTRL_REG2_HPCF0 = 0x01, // highpass filter cutoff
CTRL_REG2_HPCF1 = 0x02,
CTRL_REG2_HPCF2 = 0x04,
CTRL_REG2_HPCF3 = 0x08,
_CTRL_REG2_HPCF_MASK = 15,
_CTRL_REG2_HPCF_SHIFT = 0,
CTRL_REG2_HPM0 = 0x10, // highpass filter mode
CTRL_REG2_HPM1 = 0x20,
_CTRL_REG2_HPM_MASK = 3,
_CTRL_REG2_HPM_SHIFT = 4
// 0x40-0x80 reserved
} CTRL_REG2_BITS_T;
/**
* CTRL_REG2_HPCF values (see table 26 in the datasheet)
*/
typedef enum {
HPCF_7_2 = 0, // 7.2Hz CO (w/ ODR@95Hz)
HPCF_3_5 = 1,
HPCF_1_8 = 2,
HPCF_0_9 = 3,
HPCF_0_45 = 4,
HPCF_0_18 = 5,
HPCF_0_09 = 6,
HPCF_0_045 = 7,
HPCF_0_018 = 8,
HPCF_0_009 = 9
} HPCF_T;
/**
* CTRL_REG2_HPM values
*/
typedef enum {
HPM_NORMAL_RESET_FILTER = 0,
HPM_REFERENCE_SIGNAL = 1,
HPM_NORMAL = 2,
HPM_AUTORESET_ON_INT = 3
} HPM_T;
/**
* CTRL_REG3 bits
*/
typedef enum {
CTRL_REG3_I2_EMPTY = 0x01,
CTRL_REG3_I2_ORUN = 0x02,
CTRL_REG3_I2_WTM = 0x04,
CTRL_REG3_I2_DRDY = 0x08,
CTRL_REG3_PP_OD = 0x10,
CTRL_REG3_H_LACTIVE = 0x20,
CTRL_REG3_I1_BOOT = 0x40,
CTRL_REG3_I1_INT1 = 0x80
} CTRL_REG3_BITS_T;
/**
* CTRL_REG4 bits
*/
typedef enum {
_CTRL_REG4_RESERVED_BITS = 0x02 | 0x04 | 0x08,
CTRL_REG4_SIM = 0x01, // SPI 3 or 4 wire
// 0x02-0x08 reserved
CTRL_REG4_FS0 = 0x10, // full scale select
CTRL_REG4_FS1 = 0x20,
_CTRL_REG4_FS_MASK = 3,
_CTRL_REG4_FS_SHIFT = 4,
CTRL_REG4_BLE = 0x40, // endian selection
CTRL_REG4_BDU = 0x80 // block updating
} CTRL_REG4_BITS_T;
/**
* CTRL_REG4_FS values
*/
typedef enum {
FS_250 = 0, // 250 deg/s
FS_500 = 1,
FS_2000 = 2
} FS_T;
/**
* CTRL_REG5 bits
*/
typedef enum {
_CTRL_REG5_RESERVED_BITS = 0x20,
CTRL_REG5_OUT_SEL0 = 0x01,
CTRL_REG5_OUT_SEL1 = 0x02,
_CTRL_REG5_OUT_SEL_MASK = 3,
_CTRL_REG5_OUT_SEL_SHIFT = 0,
CTRL_REG5_INT1_SEL0 = 0x04,
CTRL_REG5_INT1_SEL1 = 0x08,
_CTRL_REG5_INT1_SEL_MASK = 3,
_CTRL_REG5_INT1_SEL_SHIFT = 2,
CTRL_REG5_HPEN = 0x10,
// 0x20 reserved
CTRL_REG5_FIFO_EN = 0x40,
CTRL_REG5_BOOT = 0x80
} CTRL_REG5_BITS_T;
/**
* STATUS_REG bits
*/
typedef enum {
STATUS_REG_XDA = 0x01, // axis data avail
STATUS_REG_YDA = 0x02,
STATUS_REG_ZDA = 0x04,
STATUS_REG_ZYXDA = 0x08,
STATUS_REG_XOR = 0x10, // axis data overrun
STATUS_REG_YOR = 0x20,
STATUS_REG_ZOR = 0x40,
STATUS_REG_ZYXOR = 0x80
} STATUS_REG_BITS_T;
/**
* FIFO_CTRL_REG bits
*/
typedef enum {
FIFO_CTRL_REG_WTM0 = 0x01, // FIFO watermark
FIFO_CTRL_REG_WTM1 = 0x02,
FIFO_CTRL_REG_WTM2 = 0x04,
FIFO_CTRL_REG_WTM3 = 0x08,
FIFO_CTRL_REG_WTM4 = 0x10,
_FIFO_CTRL_REG_WTM_MASK = 31,
_FIFO_CTRL_REG_WTM_SHIFT = 0,
FIFO_CTRL_REG_FM0 = 0x20, // FIFO mode
FIFO_CTRL_REG_FM1 = 0x40,
FIFO_CTRL_REG_FM2 = 0x80,
_FIFO_CTRL_REG_FM_MASK = 7,
_FIFO_CTRL_REG_FM_SHIFT = 5
} FIFO_CTRL_REG_BITS_T;
/**
* FIFO_CTRL_REG_FM (FIFO mode) values
*/
typedef enum {
FIFO_MODE_BYPASS = 0,
FIFO_MODE_FIFO = 1,
FIFO_MODE_STREAM = 2,
FIFO_MODE_STREAM_TO_FIFO = 3,
FIFO_MODE_BYPASS_TO_STREAM = 4
} FIFO_MODE_T;
/**
* FIFO_SRC_REG bits
*/
typedef enum {
FIFO_SRC_REG_FSS0 = 0x01, // FIFO stored data level
FIFO_SRC_REG_FSS1 = 0x02,
FIFO_SRC_REG_FSS2 = 0x04,
FIFO_SRC_REG_FSS3 = 0x08,
FIFO_SRC_REG_FSS4 = 0x10,
_FIFO_SRC_REG_FSS_MASK = 31,
_FIFO_SRC_REG_FSS_SHIFT = 0,
FIFO_SRC_REG_EMPTY = 0x20,
FIFO_SRC_REG_OVRN = 0x40,
FIFO_SRC_REG_WTM = 0x80
} FIFO_SRC_BITS_T;
/**
* INT1_CFG bits
*/
typedef enum {
INT1_CFG_XLIE = 0x01, // low intr en
INT1_CFG_XHIE = 0x02, // high intr en
INT1_CFG_YLIE = 0x04,
INT1_CFG_YHIE = 0x08,
INT1_CFG_ZLIE = 0x10,
INT1_CFG_ZHIE = 0x20,
INT1_CFG_LIR = 0x40,
INT1_CFG_AND_OR = 0x80
} INT1_CFG_BITS_T;
/**
* INT1_SRC bits
*/
typedef enum {
_INT1_SRC_RESERVED_BITS = 0x80,
INT1_SRC_XL = 0x01, // X low intr
INT1_SRC_XH = 0x02, // X high intr
INT1_SRC_YL = 0x04,
INT1_SRC_YH = 0x08,
INT1_SRC_ZL = 0x10,
INT1_SRC_ZH = 0x20,
INT1_SRC_IA = 0x40 // intr active
// 0x80 reserved
} INT1_SRC_BITS_T;
/**
* INT1_DURATION bits
*/
typedef enum {
INT1_DURATION_D0 = 0x01,
INT1_DURATION_D1 = 0x02,
INT1_DURATION_D2 = 0x04,
INT1_DURATION_D3 = 0x08,
INT1_DURATION_D4 = 0x10,
INT1_DURATION_D5 = 0x20,
INT1_DURATION_D6 = 0x40,
INT1_DURATION_WAIT = 0x80
} INT1_DURATION_BITS_T;
/**
* L3GD20 Tri-axis Digital Gyroscope Contructor for IIO operation
*
* @param device iio device number
*/
L3GD20(int device);
/**
* L3GD20 Tri-axis Digital Gyroscope Contructor for I2C operation
*
* @param bus i2c bus
* @param addr I2C address
*/
L3GD20(int bus, int addr);
/**
* L3GD20 destructor
*/
~L3GD20();
/**
* Return the chip ID. I2C only.
*
* @return The chip ID (L3GD20_DEFAULT_CHIP_ID).
*/
uint8_t getChipID();
/**
* Return gyroscope data in radians per second. update() must
* have been called prior to calling this method. I2C only.
*
* @param x Pointer to a floating point value that will have the
* current x component placed into it.
* @param y Pointer to a floating point value that will have the
* current y component placed into it.
* @param z Pointer to a floating point value that will have the
* current z component placed into it.
*/
void getGyroscope(float *x, float *y, float *z);
/**
* Set the power mode of the device. I2C only.
*
* @param mode One of the POWER_MODES_T values.
*/
void setPowerMode(POWER_MODES_T mode);
/**
* Set the gyroscope detection scaling range. This device
* supports 250, 500 and 2000 degree/s ranges. I2C only.
*
* @param range One of the FS_T values.
*/
void setRange(FS_T range);
/**
* Update the internal stored values from sensor data. This
* method must be called before querying any data
* (getTemperature() and getGyroscope()). I2C only.
*/
void update();
/**
* Return the current measured temperature. Note, this is not
* ambient temperature. update() must have been called prior to
* calling this method. I2C only.
*
* @param fahrenheit true to return data in Fahrenheit, false for
* Celicus. Celsius is the default.
* @return The temperature in degrees Celsius or Fahrenheit.
*/
float getTemperature(bool fahrenheit=false);
/**
* Set the output data rate and cut off frequency of the device.
* I2C only.
*
* @param odr One of the ODR_CUTOFF_T values.
*/
void setODR(ODR_CUTOFF_T odr);
/**
* Enable or disable Block Data Update. When enabled, this
* ensures that LSB's or MSB's of a given axis are not being
* updated while the other is being read. This is enabled by
* default. I2C only.
*
* @param enable true to enable, false to disable
*/
void enableBDU(bool enable);
/**
* Return the bitfields of the Status register. This register
* provides information on the status of data gathering. I2C
* only.
*
* @return The contents of the REG_STATUS_REG register.
*/
uint8_t getStatusBits();
/**
* Installs an interrupt service routine (ISR) to be called when
* an interrupt occurs. IIO only.
*
* @param isr Pointer to a function to be called on interrupt
* @param arg Pointer to an object to be supplied as an
* argument to the ISR.
*/
void installISR(void (*isr)(char*, void*), void* arg);
/**
* Extract the channel value based on channel type. IIO only.
*
* @param input Channel data
* @param chan MRAA iio-layer channel info
*/
int64_t getChannelValue(unsigned char* input, mraa_iio_channel* chan);
/**
* Enable trigger buffer. IIO only.
*
* @param length buffer length in integer
*/
bool enableBuffer(int length);
/**
* Disable trigger buffer. IIO only.
*/
bool disableBuffer();
/**
* Set scale. IIO only. For I2C operation, use setRange() with
* the appropriate FS_T value.
*
* @param scale in float
* Available scales are 0.000153(250dps), 0.000305(500dps), and
* 0.001222(2000dps) Default scale is 0.000153
*/
bool setScale(const float scale);
/**
* Set sampling frequency. IIO only. For I2C operation, use the
* setODR() method with the appropriate ODR_CUTOFF_T value.
*
* @param sampling_frequency sampling frequency in float
* Available sampling frequency are 95, 190, 380, and 760
* Default sampling frequency is 95
*/
bool setSamplingFrequency(const float sampling_frequency);
/**
* Enable 3 axis scan element. IIO only.
*/
bool enable3AxisChannel();
/**
* Process enabled channel buffer and return x, y, z axis. IIO only.
* @param data Enabled channel data, 6 bytes, each axis 2 bytes
* @param x X-Axis
* @param y Y-Axis
* @param z Z-Axis
*/
bool extract3Axis(char* data, float* x, float* y, float* z);
/**
* Reset calibration data and start collect calibration data again
*/
void initCalibrate();
/**
* Get calibrated status, return true if calibrate successfully
*/
bool getCalibratedStatus();
/**
* Get calibrated data
*/
void getCalibratedData(float* bias_x, float* bias_y, float* bias_z);
/**
* Load calibrated data
*/
void loadCalibratedData(float bias_x, float bias_y, float bias_z);
/**
* Read a register. I2C mode only.
*
* @param reg The register to read.
* @return The value of the register.
*/
uint8_t readReg(uint8_t reg);
/**
* Read contiguous registers into a buffer. I2C mode only.
*
* @param buffer The buffer to store the results.
* @param len The number of registers to read.
* @return The number of bytes read.
*/
int readRegs(uint8_t reg, uint8_t *buffer, int len);
/**
* Write to a register. I2C mode only.
*
* @param reg The register to write to.
* @param val The value to write.
*/
void writeReg(uint8_t reg, uint8_t val);
/**
* Calibrate gyro
* @param x X-Axis
* @param y Y-Axis
* @param z Z-Axis
*/
bool gyroCollect(float x, float y, float z);
/**
* Denoise gyro
* @param x X-Axis
* @param y Y-Axis
* @param z Z-Axis
*/
void gyroDenoiseMedian(float* x, float* y, float* z);
/**
* median algorithm
* @param queue
* @param size
*/
float median(float* queue, unsigned int size);
/**
* partition algorithm
* @param list
* @param left
* @param right
* @param pivot_index
*/
unsigned int
partition(float* list, unsigned int left, unsigned int right, unsigned int pivot_index);
/**
* Clamp Gyro Readings to Zero
* @param x X-Axis
* @param y Y-Axis
* @param z Z-Axis
*/
void clampGyroReadingsToZero(float* x, float* y, float* z);
protected:
mraa::I2c *m_i2c;
float m_gyrScale;
float m_gyrX;
float m_gyrY;
float m_gyrZ;
float m_temperature;
private:
mraa_iio_context m_iio;
int m_iio_device_num;
bool m_mount_matrix_exist; // is mount matrix exist
float m_mount_matrix[9]; // mount matrix
float m_scale; // gyroscope data scale
int m_event_count; // sample data arrive
bool m_calibrated; // calibrate state
gyro_cal_t m_cal_data; // calibrate data
filter_median_t m_filter; // filter data
};
}