upm/src/bma250e/bma250e.c
Jon Trulson 7d789ec208 bma250e: fix up some comments and error messages
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2017-03-30 16:43:35 -06:00

968 lines
24 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include "upm_utilities.h"
#include "bma250e.h"
// macro for converting a uint8_t low/high pair into a float
#define INT16_TO_FLOAT(h, l) \
(float)( (int16_t)( (l) | ((h) << 8) ) )
// SPI CS on and off functions
static void _csOn(const bma250e_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 0);
}
static void _csOff(const bma250e_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 1);
}
// init
bma250e_context bma250e_init(int bus, int addr, int cs)
{
bma250e_context dev =
(bma250e_context)malloc(sizeof(struct _bma250e_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _bma250e_context));
// make sure MRAA is initialized
if (mraa_init() != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
if (addr < 0)
dev->isSPI = true;
if (dev->isSPI)
{
if (!(dev->spi = mraa_spi_init(bus)))
{
printf("%s: mraa_spi_init() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs >= 0)
{
if (!(dev->gpioCS = mraa_gpio_init(cs)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
mraa_gpio_dir(dev->gpioCS, MRAA_GPIO_OUT);
}
mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
if (mraa_spi_frequency(dev->spi, 5000000))
{
printf("%s: mraa_spi_frequency() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
}
else
{
// I2C
if (!(dev->i2c = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, addr))
{
printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
}
// check the chip id
uint8_t chipID = bma250e_get_chip_id(dev);
// check the various chips id's and set appropriate capabilities.
// Bail if the chip id is unknown.
switch (chipID)
{
case 0xf9: // standalone bma250e
dev->resolution = BMA250E_RESOLUTION_10BITS;
dev->fifoAvailable = true;
break;
case 0xfa: // bmx055, bmi055 variants, 12b resolution
dev->resolution = BMA250E_RESOLUTION_12BITS;
dev->fifoAvailable = true;
break;
case 0x03: // bmc050 variant, no FIFO, 12b resolution
dev->resolution = BMA250E_RESOLUTION_12BITS;
dev->fifoAvailable = false;
break;
default:
printf("%s: invalid chip id: %02x. Expected f9, fa, or 03\n",
__FUNCTION__, chipID);
bma250e_close(dev);
return NULL;
}
// call devinit with default options
if (bma250e_devinit(dev, BMA250E_POWER_MODE_NORMAL, BMA250E_RANGE_2G,
BMA250E_BW_250))
{
printf("%s: bma250e_devinit() failed.\n", __FUNCTION__);
bma250e_close(dev);
return NULL;
}
return dev;
}
void bma250e_close(bma250e_context dev)
{
assert(dev != NULL);
bma250e_uninstall_isr(dev, BMA250E_INTERRUPT_INT1);
bma250e_uninstall_isr(dev, BMA250E_INTERRUPT_INT2);
if (dev->i2c)
mraa_i2c_stop(dev->i2c);
if (dev->spi)
mraa_spi_stop(dev->spi);
if (dev->gpioCS)
mraa_gpio_close(dev->gpioCS);
free(dev);
}
upm_result_t bma250e_devinit(const bma250e_context dev,
BMA250E_POWER_MODE_T pwr,
BMA250E_RANGE_T range,
BMA250E_BW_T bw)
{
assert(dev != NULL);
if (bma250e_set_power_mode(dev, pwr))
{
printf("%s: bma250e_set_power_mode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(50); // 50ms, in case we are waking up
// set our range and bandwidth, make sure register shadowing is
// enabled, enable output filtering, and set our FIFO config
if (bma250e_set_range(dev, range)
|| bma250e_set_bandwidth(dev, bw)
|| bma250e_enable_register_shadowing(dev, true)
|| bma250e_enable_output_filtering(dev, true)
|| bma250e_fifo_config(dev, BMA250E_FIFO_MODE_BYPASS,
BMA250E_FIFO_DATA_SEL_XYZ))
{
printf("%s: failed to set configuration parameters.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
bma250e_enable_fifo(dev, true);
// make sure low power mode LPM2 is enabled in case we go to low
// power or suspend mode. LPM1 mode (the default) requires register
// writes to be drastically slowed down when enabled, which we
// cannot handle.
bma250e_set_low_power_mode2(dev);
// settle
upm_delay_ms(50);
return UPM_SUCCESS;
}
upm_result_t bma250e_update(const bma250e_context dev)
{
assert(dev != NULL);
int bufLen = 7; // max, non-FIFO
uint8_t startReg = BMA250E_REG_ACCD_X_LSB;
if (dev->useFIFO)
{
bufLen = 6;
startReg = BMA250E_REG_FIFO_DATA;
}
uint8_t buf[bufLen];
if (bma250e_read_regs(dev, startReg, buf, bufLen) != bufLen)
{
printf("%s: bma250e_read_regs() failed to read %d bytes\n",
__FUNCTION__, bufLen);
return UPM_ERROR_OPERATION_FAILED;
}
uint8_t mask = 0, shift = 0;
float divisor = 1;
switch (dev->resolution)
{
case BMA250E_RESOLUTION_10BITS:
mask = _BMA250E_ACCD10_LSB_MASK;
shift = _BMA250E_ACCD10_LSB_SHIFT;
divisor = 64.0;
break;
case BMA250E_RESOLUTION_12BITS:
mask = _BMA250E_ACCD12_LSB_MASK;
shift = _BMA250E_ACCD12_LSB_SHIFT;
divisor = 16.0;
break;
}
// x msb lsb
dev->accX = INT16_TO_FLOAT(buf[1], (buf[0] & (mask << shift))) / divisor;
// y
dev->accY = INT16_TO_FLOAT(buf[3], (buf[2] & (mask << shift))) / divisor;
// z
dev->accZ = INT16_TO_FLOAT(buf[5], (buf[4] & (mask << shift))) / divisor;
// get the temperature...
int8_t temp = 0;
if (dev->useFIFO)
{
// we have to read temperature separately...
temp = (int8_t)bma250e_read_reg(dev, BMA250E_REG_TEMP);
}
else
{
// we already got it
temp = (int8_t)buf[6];
}
// .5K/LSB, 23C center point
dev->temperature = ((float)temp / 2.0) + 23.0;
return UPM_SUCCESS;
}
void bma250e_enable_fifo(const bma250e_context dev, bool useFIFO)
{
assert(dev != NULL);
if (dev->fifoAvailable)
dev->useFIFO = useFIFO;
}
uint8_t bma250e_read_reg(const bma250e_context dev, uint8_t reg)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t pkt[2] = {reg, 0};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, pkt, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return 0xff;
}
_csOff(dev);
return pkt[1];
}
else
return (uint8_t)mraa_i2c_read_byte_data(dev->i2c, reg);
}
int bma250e_read_regs(const bma250e_context dev, uint8_t reg,
uint8_t *buffer, int len)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t sbuf[len + 1];
memset((char *)sbuf, 0, len + 1);
sbuf[0] = reg;
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return -1;
}
_csOff(dev);
// now copy it into user buffer
for (int i=0; i<len; i++)
buffer[i] = sbuf[i + 1];
}
else
{
if (mraa_i2c_read_bytes_data(dev->i2c, reg, buffer, len) != len)
return -1;
}
return len;
}
upm_result_t bma250e_write_reg(const bma250e_context dev,
uint8_t reg, uint8_t val)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg &= 0x7f; // mask off 0x80 for writing
uint8_t pkt[2] = {reg, val};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, NULL, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
_csOff(dev);
}
else
{
if (mraa_i2c_write_byte_data(dev->i2c, val, reg))
{
printf("%s: mraa_i2c_write_byte_data() failed.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
return UPM_SUCCESS;
}
uint8_t bma250e_get_chip_id(const bma250e_context dev)
{
assert(dev != NULL);
return bma250e_read_reg(dev, BMA250E_REG_CHIP_ID);
}
void bma250e_get_accelerometer(const bma250e_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = (dev->accX * dev->accScale) / 1000.0;
if (y)
*y = (dev->accY * dev->accScale) / 1000.0;
if (z)
*z = (dev->accZ * dev->accScale) / 1000.0;
}
float bma250e_get_temperature(const bma250e_context dev)
{
assert(dev != NULL);
return dev->temperature;
}
upm_result_t bma250e_reset(const bma250e_context dev)
{
assert(dev != NULL);
if (bma250e_write_reg(dev, BMA250E_REG_SOFTRESET, BMA250E_RESET_BYTE))
return UPM_ERROR_OPERATION_FAILED;
upm_delay(1);
return UPM_SUCCESS;
}
upm_result_t bma250e_set_range(const bma250e_context dev,
BMA250E_RANGE_T range)
{
assert(dev != NULL);
if (bma250e_write_reg(dev, BMA250E_REG_PMU_RANGE, range))
return UPM_ERROR_OPERATION_FAILED;
switch (dev->resolution)
{
case BMA250E_RESOLUTION_10BITS:
switch(range)
{
case BMA250E_RANGE_2G:
dev->accScale = 3.91; // milli-gravities
break;
case BMA250E_RANGE_4G:
dev->accScale = 7.81;
break;
case BMA250E_RANGE_8G:
dev->accScale = 15.63;
break;
case BMA250E_RANGE_16G:
dev->accScale = 31.25;
break;
}
break;
case BMA250E_RESOLUTION_12BITS:
switch(range)
{
case BMA250E_RANGE_2G:
dev->accScale = 0.98; // milli-gravities
break;
case BMA250E_RANGE_4G:
dev->accScale = 1.95;
break;
case BMA250E_RANGE_8G:
dev->accScale = 3.91;
break;
case BMA250E_RANGE_16G:
dev->accScale = 7.81;
break;
}
break;
}
return UPM_SUCCESS;
}
upm_result_t bma250e_set_bandwidth(const bma250e_context dev,
BMA250E_BW_T bw)
{
assert(dev != NULL);
if (bma250e_write_reg(dev, BMA250E_REG_PMU_BW, bw))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_set_power_mode(const bma250e_context dev,
BMA250E_POWER_MODE_T power)
{
assert(dev != NULL);
// mask off reserved bits first
uint8_t reg =
bma250e_read_reg(dev, BMA250E_REG_PMU_LPW)
& ~_BMA250E_PMU_LPW_RESERVED_MASK;
reg &= ~(_BMA250E_PMU_LPW_POWER_MODE_MASK
<< _BMA250E_PMU_LPW_POWER_MODE_SHIFT);
reg |= (power << _BMA250E_PMU_LPW_POWER_MODE_SHIFT);
if (bma250e_write_reg(dev, BMA250E_REG_PMU_LPW, power))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_fifo_set_watermark(const bma250e_context dev, int wm)
{
assert(dev != NULL);
if (!dev->fifoAvailable)
return UPM_ERROR_NOT_SUPPORTED;
// mask off illegal values
uint8_t reg = ((uint8_t)wm) & _BMA250E_FIFO_CONFIG_0_WATER_MARK_MASK;
if (bma250e_write_reg(dev, BMA250E_REG_FIFO_CONFIG_0, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_fifo_config(const bma250e_context dev,
BMA250E_FIFO_MODE_T mode,
BMA250E_FIFO_DATA_SEL_T axes)
{
assert(dev != NULL);
if (!dev->fifoAvailable)
return UPM_ERROR_NOT_SUPPORTED;
uint8_t reg = ( (mode << _BMA250E_FIFO_CONFIG_1_FIFO_MODE_SHIFT) |
(axes << _BMA250E_FIFO_CONFIG_1_FIFO_DATA_SHIFT) );
if (bma250e_write_reg(dev, BMA250E_REG_FIFO_CONFIG_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_set_self_test(const bma250e_context dev,
bool sign, bool amp,
BMA250E_SELFTTEST_AXIS_T axis)
{
assert(dev != NULL);
uint8_t reg = (axis << _BMA250E_PMU_SELFTTEST_AXIS_SHIFT);
if (amp)
reg |= BMA250E_PMU_SELFTTEST_AMP;
if (sign)
reg |= BMA250E_PMU_SELFTTEST_SIGN;
if (bma250e_write_reg(dev, BMA250E_REG_PMU_SELFTEST, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_enable0(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_EN_0)
& ~_BMA250E_INT_EN_0_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_enable0(const bma250e_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_EN_0_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_EN_0, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_enable1(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_EN_1)
& ~_BMA250E_INT_EN_1_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_enable1(const bma250e_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_EN_1_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_EN_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_enable2(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_EN_2)
& ~_BMA250E_INT_EN_2_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_enable2(const bma250e_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_EN_2_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_EN_2, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_map0(const bma250e_context dev)
{
assert(dev != NULL);
return bma250e_read_reg(dev, BMA250E_REG_INT_MAP_0);
}
upm_result_t bma250e_set_interrupt_map0(const bma250e_context dev, uint8_t bits)
{
assert(dev != NULL);
if (bma250e_write_reg(dev, BMA250E_REG_INT_MAP_0, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_map1(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_MAP_1)
& ~_BMA250E_INT_MAP_1_INT1_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_map1(const bma250e_context dev, uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_MAP_1_INT1_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_MAP_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_map2(const bma250e_context dev)
{
assert(dev != NULL);
return bma250e_read_reg(dev, BMA250E_REG_INT_MAP_2);
}
upm_result_t bma250e_set_interrupt_map2(const bma250e_context dev, uint8_t bits)
{
assert(dev != NULL);
if (bma250e_write_reg(dev, BMA250E_REG_INT_MAP_2, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_src(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_SRC)
& ~_BMA250E_INT_SRC_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_src(const bma250e_context dev, uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_SRC_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_SRC, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_output_control(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_OUT_CTRL)
& ~_BMA250E_INT_OUT_CTRL_INT1_RESERVED_BITS);
}
upm_result_t bma250e_set_interrupt_output_control(const bma250e_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMA250E_INT_OUT_CTRL_INT1_RESERVED_BITS;
if (bma250e_write_reg(dev, BMA250E_REG_INT_OUT_CTRL, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_clear_interrupt_latches(const bma250e_context dev)
{
assert(dev != NULL);
uint8_t reg =
(bma250e_read_reg(dev, BMA250E_REG_INT_RST_LATCH)
& ~_BMA250E_INT_RST_LATCH_RESERVED_BITS);
reg |= BMA250E_INT_RST_LATCH_RESET_INT;
if (bma250e_write_reg(dev, BMA250E_REG_INT_RST_LATCH, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
BMA250E_RST_LATCH_T bma250e_get_interrupt_latch_behavior(
const bma250e_context dev)
{
assert(dev != NULL);
uint8_t reg = (bma250e_read_reg(dev, BMA250E_REG_INT_RST_LATCH)
& ~_BMA250E_INT_RST_LATCH_RESERVED_BITS);
reg &= (_BMA250E_INT_RST_LATCH_MASK << _BMA250E_INT_RST_LATCH_SHIFT);
return (BMA250E_RST_LATCH_T)reg;
}
upm_result_t bma250e_set_interrupt_latch_behavior(const bma250e_context dev,
BMA250E_RST_LATCH_T latch)
{
assert(dev != NULL);
uint8_t reg =
(bma250e_read_reg(dev, BMA250E_REG_INT_RST_LATCH)
& ~_BMA250E_INT_RST_LATCH_RESERVED_BITS);
reg &= ~(_BMA250E_INT_RST_LATCH_MASK << _BMA250E_INT_RST_LATCH_SHIFT);
reg |= (latch << _BMA250E_INT_RST_LATCH_SHIFT);
if (bma250e_write_reg(dev, BMA250E_REG_INT_RST_LATCH, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_enable_register_shadowing(const bma250e_context dev,
bool shadow)
{
assert(dev != NULL);
uint8_t reg =
(bma250e_read_reg(dev, BMA250E_REG_ACC_HBW)
& ~_BMA250E_ACC_HBW_RESERVED_BITS);
if (shadow)
reg &= ~BMA250E_ACC_HBW_SHADOW_DIS;
else
reg |= BMA250E_ACC_HBW_SHADOW_DIS;
if (bma250e_write_reg(dev, BMA250E_REG_ACC_HBW, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_enable_output_filtering(const bma250e_context dev,
bool filter)
{
assert(dev != NULL);
uint8_t reg =
(bma250e_read_reg(dev, BMA250E_REG_ACC_HBW)
& ~_BMA250E_ACC_HBW_RESERVED_BITS);
if (filter)
reg &= ~BMA250E_ACC_HBW_DATA_HIGH_BW;
else
reg |= BMA250E_ACC_HBW_DATA_HIGH_BW;
if (bma250e_write_reg(dev, BMA250E_REG_ACC_HBW, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bma250e_get_interrupt_status0(const bma250e_context dev)
{
assert(dev != NULL);
return bma250e_read_reg(dev, BMA250E_REG_INT_STATUS_0);
}
uint8_t bma250e_get_interrupt_status1(const bma250e_context dev)
{
assert(dev != NULL);
return (bma250e_read_reg(dev, BMA250E_REG_INT_STATUS_1)
& ~_BMA250E_INT_STATUS_1_RESERVED_BITS);
}
uint8_t bma250e_get_interrupt_status2(const bma250e_context dev)
{
assert(dev != NULL);
return bma250e_read_reg(dev, BMA250E_REG_INT_STATUS_2);
}
uint8_t bma250e_get_interrupt_status3_bits(const bma250e_context dev)
{
assert(dev != NULL);
// filter out the orientation bitfield..
return (bma250e_read_reg(dev, BMA250E_REG_INT_STATUS_3)
& ~(_BMA250E_INT_STATUS_3_ORIENT_MASK
<< _BMA250E_INT_STATUS_3_ORIENT_SHIFT));
}
BMA250E_ORIENT_T bma250e_get_interrupt_status3_orientation(
const bma250e_context dev)
{
assert(dev != NULL);
// grab just the orientation bitfield
uint8_t reg = (bma250e_read_reg(dev, BMA250E_REG_INT_STATUS_3)
& (_BMA250E_INT_STATUS_3_ORIENT_MASK
<< _BMA250E_INT_STATUS_3_ORIENT_SHIFT));
reg >>= _BMA250E_INT_STATUS_3_ORIENT_SHIFT;
return (BMA250E_ORIENT_T)reg;
}
upm_result_t bma250e_set_low_power_mode2(const bma250e_context dev)
{
assert(dev != NULL);
uint8_t reg = (bma250e_read_reg(dev, BMA250E_REG_PMU_LOW_POWER)
& ~_BMA250E_LOW_POWER_RESERVED_BITS);
// we simply set the low power mode to 2. Low power mode 1 slows
// down register write accesses, and we can't handle that. In the
// words of the late Admiral Akbar: "We cannot handle firepower of
// that magnitude!" :(
reg |= BMA250E_LOW_POWER_LOWPOWER_MODE;
if (bma250e_write_reg(dev, BMA250E_REG_PMU_LOW_POWER, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bma250e_install_isr(const bma250e_context dev,
BMA250E_INTERRUPT_PINS_T intr, int gpio,
mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
assert(dev != NULL);
// delete any existing ISR and GPIO context for this interrupt
bma250e_uninstall_isr(dev, intr);
mraa_gpio_context gpio_isr = NULL;
// create gpio context
if (!(gpio_isr = mraa_gpio_init(gpio)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_dir(gpio_isr, MRAA_GPIO_IN);
if (mraa_gpio_isr(gpio_isr, level, isr, arg))
{
mraa_gpio_close(gpio_isr);
printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
switch (intr)
{
case BMA250E_INTERRUPT_INT1:
dev->gpio1 = gpio_isr;
break;
case BMA250E_INTERRUPT_INT2:
dev->gpio2 = gpio_isr;
break;
}
return UPM_SUCCESS;
}
void bma250e_uninstall_isr(const bma250e_context dev,
BMA250E_INTERRUPT_PINS_T intr)
{
assert(dev != NULL);
switch (intr)
{
case BMA250E_INTERRUPT_INT1:
if (dev->gpio1)
{
mraa_gpio_isr_exit(dev->gpio1);
mraa_gpio_close(dev->gpio1);
dev->gpio1 = NULL;
}
break;
case BMA250E_INTERRUPT_INT2:
if (dev->gpio2)
{
mraa_gpio_isr_exit(dev->gpio2);
mraa_gpio_close(dev->gpio2);
dev->gpio2 = NULL;
}
break;
}
}