upm/src/ms5803/ms5803.c
Jon Trulson 803f9a9838 ms5803: initial implementation; C, C++; FTI + examples
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2016-11-14 17:26:42 -07:00

505 lines
13 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include "ms5803.h"
#include <upm_math.h>
#include <upm_platform.h>
#include <upm_utilities.h>
// quick binary power of 2 function
#define POWB(type, exp) ((type)1 << exp)
// For SPI, these are our CS on/off functions, if needed
static void ms5803_cs_on(const ms5803_context dev)
{
assert(dev != NULL);
if (dev->gpio)
mraa_gpio_write(dev->gpio, 0);
}
static void ms5803_cs_off(const ms5803_context dev)
{
assert(dev != NULL);
if (dev->gpio)
mraa_gpio_write(dev->gpio, 1);
}
static upm_result_t ms5803_get_adc_value(const ms5803_context dev,
MS5803_CMD_T cmd,
MS5803_OSR_T dly,
uint32_t *value)
{
assert(dev != NULL);
uint8_t buf[3];
if (ms5803_bus_write(dev, cmd, NULL, 0))
{
printf("%s: ms5802_bus_write() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// need to delay for the appropriate time
upm_delay_ms(dly);
// now, get the 3 byte sample
if (ms5803_bus_read(dev, MS5803_CMD_ADC_READ, buf, 3))
{
printf("%s: ms5802_bus_read() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
*value = ((buf[0] << 16) | (buf[1] << 8) | buf[2]);
return UPM_SUCCESS;
}
ms5803_context ms5803_init(unsigned int bus, int address, int cs_pin)
{
ms5803_context dev =
(ms5803_context)malloc(sizeof(struct _ms5803_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _ms5803_context));
// make sure MRAA is initialized
int mraa_rv;
if ((mraa_rv = mraa_init()) != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed (%d).\n", __FUNCTION__, mraa_rv);
ms5803_close(dev);
return NULL;
}
if (address > 0)
{
// we are doing I2C
dev->isSPI = false;
if (!(dev->i2c = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, address) != MRAA_SUCCESS)
{
printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
#if defined(UPM_PLATFORM_ZEPHYR)
// we seem to need to stick qith 100khz for some reason with
// this device on Zephyr. Even at 100Khz, while calibration
// data is now read correctly, there are other issues yet to
// be determined. But as a first step, 100Khz is a
// requirement for this driver on Zephyr.
if (mraa_i2c_frequency(dev->i2c, MRAA_I2C_STD))
{
printf("%s: mraa_i2c_frequency() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
#endif // UPM_PLATFORM_ZEPHYR
}
else
{
// we are doing SPI
dev->isSPI = true;
if (!(dev->spi = mraa_spi_init(bus)))
{
printf("%s: mraa_spi_init() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs_pin >= 0)
{
if (!(dev->gpio = mraa_gpio_init(cs_pin)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
mraa_gpio_dir(dev->gpio, MRAA_GPIO_OUT);
ms5803_cs_off(dev);
}
if (mraa_spi_mode(dev->spi, MRAA_SPI_MODE0))
{
printf("%s: mraa_spi_mode() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
if (mraa_spi_frequency(dev->spi, 10000000))
{
printf("%s: mraa_spi_frequency() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
}
// read factory coefficients
if (ms5803_load_coefficients(dev))
{
printf("%s: ms5803_load_coefficients() failed.\n", __FUNCTION__);
ms5803_close(dev);
return NULL;
}
// set the default OSR to the highest resolution
ms5803_set_temperature_osr(dev, MS5803_OSR_4096);
ms5803_set_pressure_osr(dev, MS5803_OSR_4096);
return dev;
}
void ms5803_close(ms5803_context dev)
{
assert(dev != NULL);
if (dev->i2c)
mraa_i2c_stop(dev->i2c);
if (dev->spi)
mraa_spi_stop(dev->spi);
if (dev->gpio)
mraa_gpio_close(dev->gpio);
free(dev);
}
upm_result_t ms5803_update(const ms5803_context dev)
{
assert(dev != NULL);
// start by getting temperature and then pressure
uint32_t rawTemperature;
uint32_t rawPressure;
// temperature
if (ms5803_get_adc_value(dev, dev->temperatureCmd, dev->temperatureDelay,
&rawTemperature))
{
printf("%s: ms5803_get_adc_value() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// pressure
if (ms5803_get_adc_value(dev, dev->pressureCmd, dev->pressureDelay,
&rawPressure))
{
printf("%s: ms5803_get_adc_value() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
// printf("raw T = %u P = %u\n", rawTemperature, rawPressure);
// This algorithm comes from the datasheet.
// calc 1st order compensated temperature
int32_t dT = rawTemperature - dev->C[5] * POWB(int32_t, 8);
int32_t TEMP = 2000 + (int64_t)dT * dev->C[6] / POWB(int32_t, 23);
// calc compensated temp and pressure
int64_t OFF, SENS;
int32_t P = 0;
// first order compensation
OFF = dev->C[2] * POWB(int64_t, 16) + (dev->C[4] * dT)/POWB(int64_t, 7);
SENS = dev->C[1] * POWB(int64_t, 15) + (dev->C[3] * dT)/POWB(int64_t, 8);
// second order compensation
int64_t T2 = 0, OFF2 = 0, SENS2 = 0;
if (TEMP >= 2000)
{
// >=20C
T2 = 7 * (((uint64_t)dT * dT) / POWB(int64_t, 37));
OFF2 = ((TEMP - 2000) * (TEMP - 2000)) / POWB(int64_t, 4);
SENS2 = 0;
}
else
{
T2 = 3 * (((uint64_t)dT * dT) / POWB(int64_t, 33));
OFF2 = 3 * ((TEMP - 2000) * (TEMP - 2000)) / POWB(int64_t, 1);
SENS2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / POWB(int64_t, 3);
// further compensation for very low temps
if (TEMP < 1500)
{
// <15C
OFF2 = OFF2 + 7 * ((TEMP + 1500) * (TEMP + 1500));
SENS2 = SENS2 + 4 * ((TEMP + 1500) * (TEMP + 1500));
}
}
// final caculation
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
P = (rawPressure * SENS/POWB(int64_t, 21) - OFF)/POWB(int64_t, 15);
dev->temperature = (float)TEMP / 100.0;
dev->pressure = (float)P/10.0;
return UPM_SUCCESS;
}
upm_result_t ms5803_load_coefficients(const ms5803_context dev)
{
assert(dev != NULL);
// we will load them all, even though only 6 of them are of use to us
uint8_t buffer[2];
for (int i=0; i<MS5803_MAX_COEFFICIENTS; i++)
{
uint8_t cmd = MS5803_CMD_PROM_READ | ((i & 7) << 1);
if (ms5803_bus_read(dev, cmd, buffer, 2))
{
printf("%s: ms5802_bus_read() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
dev->C[i] = (buffer[0] << 8) | buffer[1];
// printf("C[%d] = %u\n", i, dev->C[i]);
}
return UPM_SUCCESS;
}
// i2c bus read and write functions
upm_result_t ms5803_bus_read(const ms5803_context dev, uint8_t cmd,
uint8_t *data, uint8_t len)
{
assert(dev != NULL);
if (dev->isSPI)
{
// SPI
uint8_t sbuf[len + 1];
memset((void *)sbuf, 0, len + 1);
sbuf[0] = cmd;
ms5803_cs_on(dev);
if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1))
{
ms5803_cs_off(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
ms5803_cs_off(dev);
// now copy it into user buffer
for (int i=0; i<len; i++)
data[i] = sbuf[i + 1];
}
else
{
// I2C
if (mraa_i2c_read_bytes_data(dev->i2c, cmd, data, len) < 0)
{
printf("%s: mraa_i2c_read_bytes() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
return UPM_SUCCESS;
}
upm_result_t ms5803_bus_write(const ms5803_context dev, uint8_t cmd,
uint8_t *data, uint8_t len)
{
assert(dev != NULL);
if (dev->isSPI)
{
// SPI
uint8_t sbuf[len + 1];
memset((void *)sbuf, 0, len + 1);
sbuf[0] = cmd;
// copy in the data to write...
if (data && len)
{
for (int i=0; i<len; i++)
sbuf[i + 1] = data[i];
}
ms5803_cs_on(dev);
if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1))
{
ms5803_cs_off(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
ms5803_cs_off(dev);
}
else
{
// I2C...
uint8_t buffer[len + 1];
buffer[0] = cmd;
if (data && len)
{
for (int i=0; i<len; i++)
buffer[i+1] = data[i];
}
mraa_result_t rv = mraa_i2c_write(dev->i2c, buffer, len+1);
if (rv != MRAA_SUCCESS)
{
printf("%s: mraa_i2c_write() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
return UPM_SUCCESS;
}
void ms5803_set_temperature_osr(const ms5803_context dev, MS5803_OSR_T osr)
{
assert(dev != NULL);
switch(osr)
{
case MS5803_OSR_256:
dev->temperatureCmd = MS5803_CMD_CONVERT_D2_OSR_256;
break;
case MS5803_OSR_512:
dev->temperatureCmd = MS5803_CMD_CONVERT_D2_OSR_512;
break;
case MS5803_OSR_1024:
dev->temperatureCmd = MS5803_CMD_CONVERT_D2_OSR_1024;
break;
case MS5803_OSR_2048:
dev->temperatureCmd = MS5803_CMD_CONVERT_D2_OSR_2048;
break;
case MS5803_OSR_4096:
dev->temperatureCmd = MS5803_CMD_CONVERT_D2_OSR_4096;
break;
default:
// can't happen in this universe
printf("%s: Internal error, invalid osr value %d\n", __FUNCTION__,
(int)osr);
return;
}
dev->temperatureDelay = osr;
}
void ms5803_set_pressure_osr(const ms5803_context dev, MS5803_OSR_T osr)
{
assert(dev != NULL);
switch(osr)
{
case MS5803_OSR_256:
dev->pressureCmd = MS5803_CMD_CONVERT_D1_OSR_256;
break;
case MS5803_OSR_512:
dev->pressureCmd = MS5803_CMD_CONVERT_D1_OSR_512;
break;
case MS5803_OSR_1024:
dev->pressureCmd = MS5803_CMD_CONVERT_D1_OSR_1024;
break;
case MS5803_OSR_2048:
dev->pressureCmd = MS5803_CMD_CONVERT_D1_OSR_2048;
break;
case MS5803_OSR_4096:
dev->pressureCmd = MS5803_CMD_CONVERT_D1_OSR_4096;
break;
default:
// can't happen in this universe
printf("%s: Internal error, invalid osr value %d\n", __FUNCTION__,
(int)osr);
return;
}
dev->pressureDelay = osr;
}
upm_result_t ms5803_reset(const ms5803_context dev)
{
assert(dev != NULL);
upm_result_t rv = ms5803_bus_write(dev, MS5803_CMD_RESET, NULL, 0);
upm_delay_ms(5);
return rv;
}
float ms5803_get_temperature(const ms5803_context dev)
{
assert(dev != NULL);
return dev->temperature;
}
float ms5803_get_pressure(const ms5803_context dev)
{
assert(dev != NULL);
return dev->pressure;
}