
Serial Communication Protocol

Version: 20220706

Online Version

https://developer.tuya.com/en/docs/iot/tuya-cloud-universal-serial-port-access-protocol?id=K9hhi0xxtn9cb

Contents

Contents

1 Serial communication 2

2 Frame format 3

3 Serial buffer size of module 7

4 Data units 8

5 Protocol list 10
5.1 Send heartbeats . 10
5.2 Query product information . 11
5.3 Query working mode . 16
5.4 (Optional) Notification of new feature setting 19
5.5 Report network status . 23
5.6 Reset Wi-Fi connection . 25
5.7 Reset Wi-Fi and select pairing mode 27
5.8 Send commands . 29
5.9 Report status (async) . 29
5.10Report status (sync) . 31
5.11Report status (record-type) . 32
5.12Query DP status . 36
5.13Update MCU firmware . 36
5.14Get system time in GMT . 42
5.15Get local time . 44
5.16Test Wi-Fi functionality (scanning) . 46
5.17Get module’s memory . 48
5.18(Optional) Enable weather services 49
5.19(Optional) Send weather data . 50
5.20Proactively request weather data . 52
5.21(Optional) Get Wi-Fi signal strength 54
5.22(Optional) Disable heartbeats . 55
5.23(Optional) Pairing via serial port . 56
5.24Get Wi-Fi status . 58
5.25(Optional) Map streaming for robot vacuum 60
5.26(Optional) Map data streaming for multiple maps 64

I

Contents

5.27(Optional) Get the map session ID . 66
5.28Test Wi-Fi functionality (connection) 67
5.29Get module’s MAC address . 69
5.30(Optional) IR status notification . 71
5.31(Optional) IR functionality test . 73
5.32(Optional) RF functionality . 75
5.33(Optional) File transfer service . 81
5.34(Optional) Voice features . 101
5.35Extended services . 135
5.36(Optional) Bluetooth features . 145
5.37Report and send data of extended DPs 156
5.38(Optional) Smart fan features . 162

6 Appendix 165
6.1 Appendix 1: Module information . 165
6.2 Appendix 2: File download exceptions 166
6.3 Appendix 3: File transfer status . 166
6.4 Appendix 4: OTA MCU firmware update 167
6.5 Appendix 5: File type . 167

7 Version history 170

II

Contents

This topic describes the serial protocol that is used to implement serial communica-
tion between Tuya’s Wi-Fi module or Wi-Fi and Bluetooth Low Energy (LE) combo
module and the third-party MCU.

1 / 177

1 Serial communication

1 Serial communication

• Baud: 9600/115200
• Data bit: 8
• Parity check: none
• Stop bit: 1
• Data flow control: none
• MCU: microcontroller unit. Your MCU communicates with Tuya’s modules
through the serial port.

2 / 177

2 Frame format

2 Frame format

Field Bytes Description

Header 2 It is fixed to 0x55aa.

Version 1 It is used for updates and
extensions.

Command 1 Frame type

Data length 2 Big-endian

Data N Entity data

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

• All data greater than one byte is transmitted in big-endian format.

• Generally, one command is sent by one party and received by the other party
synchronously.

That is, one party sends a command and waits for a response from the other
party. If the sender does not receive a correct response packet within a speci-
fied time period, the transmission times out, as shown in the following figure.

3 / 177

2 Frame format

:::info For more information, see the Protocol list. :::

• The module sends control commands and the MCU reports data point (DP) sta-
tus, which occurs asynchronously. Assume that the module sends a command
X and the MCU reports a command Y. The data transmission is as follows.

– The module sends a control command:

4 / 177

2 Frame format

• The MCU reports status:

5 / 177

2 Frame format

• The version field

The version number is used to distinguish between the old and legacy version.
To provide compatibility with new and legacy protocols, the module queries the
MCU version using the command 0x00 and determines which protocol version
it should use accordingly. The new protocol defaults to 0x03.

6 / 177

3 Serial buffer size of module

3 Serial buffer size of module

Chipset platform
Size of the receive
buffer

Size of the send
buffer Notes

ESP8266 256 bytes 256 bytes The buffer size is
fixed.

Others A minimum of
1,024 bytes

A minimum of
1,024 bytes

If the firmware
supports the file
transfer feature,
the maximum
buffer size
depends on the
maximum size of a
single packet
transmitted.

The length of the whole packet (including all bytes from header to checksum)
sent from the MCU to the module must not exceed the maximum size of the receive
buffer of the module. Otherwise, transmission errors might occur.

7 / 177

4 Data units

4 Data units

The DP command and status data units are defined as follows:

Data segment Bytes Description

dpid 1 The ID of a DP.

type 1 The data type of a DP
defined on the Tuya IoT
Development Platform .
For more information, see
the description of the type
fields in the following
table.

len 2 The bytes of a value. For
more information, see the
description of the type
fields in the following
table.

Value 1/2/4/N Represented in
hexadecimal format.
Data greater than one
byte is transmitted in
big-endian format.

Description of the type fields

type Data type Bytes Description

0x00 Raw N Represents a DP of
raw data type. The
data is passed
through the
module to the
cloud.

8 / 177

4 Data units

type Data type Bytes Description

0x01 Boolean 1 Represents a DP of
Boolean data type.
Valid values
include 0x00 and
0x01.

0x02 Value 4 Represents a DP of
integer type. The
data is
represented in
big-endian format.

0x03 String N Represents a DP of
string type.

0x04 Enum 1 Represents a DP of
enum type,
ranging from 0 to
255.

0x05 Bitmap 1/2/4 Represents a DP of
fault type. Data
greater than one
byte is
represented in
big-endian format.

:::info

• Except for the raw data type, all others belong to the object type.
• The status data can contain data units of multiple DPs. :::

9 / 177

5 Protocol list

5 Protocol list

5.1 Send heartbeats

• After the Wi-Fi module is powered on, it keeps sending a heartbeat to the MCU
every one second and waits for a response. If the module receives a response
to a heartbeat, it will send a heartbeat every 15 seconds and run the initial-
ization command. Otherwise, the module will keep sending a heartbeat to the
MCU every one second until receiving a response.

• The MCU can determine whether themodule works properly by detecting heart-
beats. If the module fails to send a heartbeat, the MCU can use the reset pin
to reset the module. If the MCU fails to respond to a heartbeat within three
seconds, the module determines the MCU is offline.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x00

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 00 00 00 ff

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

10 / 177

5 Protocol list

Field Bytes Description

Command 1 0x00

Data length 2 0x0001

Data 1

0x00: The MCU returns
this value only one time
after a restart. The
module uses this value to
determine whether the
MCU restarts during
operation.

0x01: The MCU
returns this value except
for the first response
after a restart.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

• For example, the MCU returns 55 aa 03 00 00 01 00 03 after a restart.
• The MCU returns 55 aa 03 00 00 01 01 04 except for the first response after a
restart.

5.2 Query product information

Product information consists of the product ID and MCU software version number.

• Product ID (PID): It is automatically generated for each product created on the
Tuya IoT Development Platform for storing product information in the cloud.

• MCU software version number: It is expressed in dot-decimal notation, x.x.x. x
is a decimal digit between 0 and 99.

The module sends the following command.

11 / 177

https://iot.tuya.com

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x01

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 01 00 00 00

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x01

Data length 2 N

Data N {“p”:“AIp08kLIftb8x***
“,”v”:“1.0.0”,“m”:1,
“mt”:10, “n”:0, “ir”:
“5.12”, “low”:0}

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, {"p":"AIp08kLIftb8x***","v":"1.0.0","m":1,"mt":10,"n":0,"ir":"5.12","low
":0}

Field description:

12 / 177

5 Protocol list

Field Description

p Indicates the product ID is
Ip08kLIftb8x***, which is the PID of a
product created on the Tuya IoT
Development Platform.

v Indicates the MCU version is 1.0.0. The
version number must be defined in the
format x.x.x.

m Indicates the operation mode of the
module.

0: active pairing. The module
automatically enters the pairing mode
and waits for pairing after startup.

1: passive pairing. The module does
not enter the pairing mode after startup
until the MCU sends the reset command.
In pairing mode, if the module is not
paired within three minutes, it will
automatically exit the pairing mode.

2: Anti-misoperation mode A paired
device that is physically reset will
resume its network connection if it is
not paired within three minutes.
Similarly, if a device that is physically
reset is shut down due to an outage, it
will resume its network connection after
startup. In this mode, if a user removed
a device from the app, the network
connection history of this device will be
cleared. You can implement this mode
for devices with a physical reset button
or switch to prevent unintended device
reset.

13 / 177

5 Protocol list

Field Description

mt Indicates the switching time period
between the safe mode and
anti-misoperation mode. You can set a
period between 3 and 10 minutes. If
you leave this field empty, the period
defaults to 3 minutes.

n Indicates the network pairing mode. If
you leave this field empty, the pairing
mode is switched between the Wi-Fi
Easy Connect (EZ) mode and the access
point (AP) mode.

0 indicates both the EZ mode and AP
mode are supported. This enables
automatic switching between these two
modes. For more information, see
Report network status .

1 indicates only the AP mode is
supported.

14 / 177

5 Protocol list

Field Description

ir Used to enable the infrared (IR) feature
and notify the module of the IR
transmission (TX) pin and IR reception
(RX) pin. If you leave this field empty,
the IR feature is disabled. For example,
5.12 indicates the IR TX pin is I/O 5 and
the IR RX pin is I/O 12. Note: If the
module works in the self-processing
mode, the IR I/Os must not be used for
the reset button or the Wi-Fi status
indicator. For cross-module I/O
configuration, the pin number plus 32
makes the pin number we need. For
example, the pin number to be set for
PB20 is 52 (20 + 32 = 52). The IR TX
pin requires PWM signals. The IR RX pin
requires I/O interrupts. For more
information about the pin configuration,
see the datasheet of your modules. If
you want to enable the IR status
indicator, see (Optional) Notification of
new feature setting and configure it.

low Used to enable the low power mode. If
you leave this field empty, the low
power mode is disabled. In low power
mode, when a device is connected to
the router but not executing any
commands, its power consumption can
be lower than 15 mA on average. When
the Wi-Fi and Bluetooth combo module
runs in low power mode, it only
supports Bluetooth pairing without
device control. If power consumption is
not your concern, you can leave this
field as is.

15 / 177

5 Protocol list

Field Description

0: disable low power mode.

1: enable low power mode.

vt Indicates the MCU firmware type, which
defaults to 9. You can set a value
between 10 and 19 to specify a
firmware type. Your specified value
must match the value of the field
Update Channel that appears when
you add firmware on the Tuya IoT
Development Platform.

The value of vt you specified in the SDKmust be consistent with the value ofUpdate
Channel specified on the Tuya IoT Development Platform. Otherwise, the device
cannot receive OTA updates or receives the wrong OTA updates.

5.3 Query working mode

The working mode means how the Wi-Fi status is indicated and the module is reset.
Two modes are available.

• The MCU works with the module to process network events.

When the MCU detects a pairing signal, it notifies the module of performing
network reset through serial communication. The module sends the current Wi-
Fi status to the MCU through serial communication. The MCU executes status
indications accordingly. Home appliances usually use this mode.

• The module processes network events itself.

The GPIO pin on the module drives the LED indicator to indicate the network
status. The GPIO input signal determines module reset.

When the module detects a low level on the GPIO input pin for more than five
seconds, it will trigger a reset action. The following command specifies the
GPIO pins of the LED indicator and the reset button.

The module sends the following command.

16 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x02

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 02 00 00 01

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x02

Data length 2

0x0000: The module
works with the MCU to
process network events.
The MCU must implement
the required features
mentioned above.

0x0002/0x0003: The
module processes
network events itself.

Data 0/2/3 The data length is 2
bytes.

17 / 177

5 Protocol list

Field Bytes Description

The first byte represents
the GPIO pin used to
indicate Wi-Fi status. The
second byte represents
the GPIO pin used to
reset the Wi-Fi network.

Data 0/2/3 If data length is 2
bytes:Data[0]: represents
the GPIO pin used to
indicate Wi-Fi
status.Data[1]:
represents the GPIO pin
used to reset the Wi-Fi
network.If data length is
3 bytes:Data[0]:
represents the GPIO pin
used to indicate Wi-Fi
status.Data[1]:
represents the GPIO pin
used to reset the Wi-Fi
network.Data[3]:
represents the GPIO pin
used to indicate
Bluetooth LE status.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example:

• The MCU works with the module to process network events.

55 aa 03 02 00 00 04

• The module processes network events itself. 0x0c indicates the LED indicator is

18 / 177

5 Protocol list

connected to GPIO12. 0x0d indicates the reset button is connected to GPIO13.

55 aa 03 02 00 02 0c 0d 1f

5.4 (Optional) Notification of new feature setting

:::important

• After the device is powered on, the MCU sends this command to notify the mod-
ule of feature configuration after the command 0x01 and before the command
0x02.

• If no new feature configuration is required, the MCU does not need to send this
command.

• The MCU must send this command each time after the module is powered on
or the module is restarted.

• The fields of this command will be added as the service is extended. :::

• ir: IR status indicator. It can share the same GPIO pin with the Wi-Fi status
indicator but must not conflict with other GPIOs associated with the command
0x02. The IR status indicator is defined as follows.

– Sharing the same GPIO pin with the Wi-Fi status indicator: The LED is on
when the IR is idle. The LED is off when the IR is used.

– Using an individual GPIO pin: The LED is on when the IR is used. The LED
is off when the IR is idle.

• buf: the maximum buffer size of the MCU serial port. For the RF remote control
feature, when multiple key values are transmitted, the buffer size depends on
whether key values are transmitted using multiple packets.

• RF remote control: the 433 MHz RF remote controls developed with the Tuya
standard RF solution.

For the RF remote control feature, when multiple key values are transmitted, the
buffer size depends on whether key values are transmitted usingmultiple packets.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

19 / 177

5 Protocol list

Field Bytes Description

Command 1 0x37

Data length 2 0x0001

Data 1 Subcommand: 0x00

{ “mcu_ota”:xx, “abv”
:x, “ir”:xx, “buf”:xx }

mcu_ota: specifies
whether an MCU has a
scratchpad. 0x00: The
MCU has a scratchpad.

0x01: The MCU does not
have a scratchpad.

abv: enables features.

Bit0: Bluetooth
connection notification
(applies to Wi-Fi and
Bluetooth combo
modules). 1: enable. 0:
disable.

Bit1: RF remote
control. 1: enable. 0:
disable.

Bit2-bit7: reserved,
defaulting to 0.

ir: sets the GPIO pin
used for IR status
indicator in the module
self-processing mode.
The data content follows
the definition of the
command 0x02. For more
information, see IR
feature .

20 / 177

5 Protocol list

Field Bytes Description

buf: the MCU serial
receive buffer, with a
minimum size of 256
bytes. If the buffer size is
not specified, the module
considers the MCU can
receive data of any
length.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the MCU has a scratchpad, the RF remote control is enabled, and
the buffer size is 1024 bytes, the MCU sends the following command. {"mcu_ota":0,
"abv":3,"buf":1024}

55 aa 03 37 00 20 00 7b 22 6d 63 75 5f 6f 74 61 22 3a 30 2c 22 61 62 76 22 3a 33 2c 22
62 75 66 22 3a 31 30 32 34 7d ab

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x00

1 0x00: success.

0x01: invalid data.

0x02: failure.

21 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 37 00 02 00 00 3b

Field description:

Field Required Description

mcu_ota No Specifies whether an
MCU has a scratchpad.
This field only applies to
HomeKit accessories
currently.

abv No Enables new features.
Each bit represents a
feature.

Bit0: Bluetooth
connection notification
(applies to Wi-Fi and
Bluetooth combo
modules). 1: enable. 0:
disable.

Bit1: RF remote
control. 1: enable. 0:
disable.

Bit2-bit7: reserved,
defaulting to 0.

22 / 177

5 Protocol list

Field Required Description

ir No Sets the GPIO pin used for
IR status indicator in the
module self-processing
mode. The data content
follows the definition of
the command 0x02. For
example, 5 indicates the
GPIO 5 is used for IR
status indicator.

buf No The MCU serial receive
buffer, with a minimum
size of 256 bytes.

5.5 Report network status

Network status Description Status value

Status 1 Pairing in EZ mode. 0x00

Status 2 Pairing in AP mode. 0x01

Status 3 The Wi-Fi network is set
up, but the device is not
connected to the router.

0x02

Status 4 The Wi-Fi network is set
up, and the device is
connected to the router.

0x03

Status 5 The device is connected
to the cloud.

0x04

Status 6 The device is in low
power mode.

0x05

Status 7 EZ mode and AP mode
coexist.

0x06

23 / 177

5 Protocol list

• Network status

– Pairing in EZ mode.
– Pairing in AP mode.
– The Wi-Fi network is set up, but the device is not connected to the router.
– The Wi-Fi network is set up, and the device is connected to the router.
– The device is connected to the cloud.

• The LED activity in the module self-processing mode.

– Status 1: blinking every 250 ms.
– Status 2: blinking every 1,500 ms.
– Status 3 or 6: steady off.
– Status 4 or 5: steady on.

• When themodule detects that the MCU is restarted or reconnected, it will proac-
tively send the current Wi-Fi status to the MCU.

• When the Wi-Fi status changes, the module will proactively send the current
status to the MCU.

• If you choose the module self-processing mode, implementing this protocol for
your MCU is not necessary.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x03

Data length 2 0x0001

Data 1 Indicates Wi-Fi status.

0x00: status 1

0x01: status 2

0x02: status 3

0x03: status 4

0x04: status 5

0x05: status 6

24 / 177

5 Protocol list

Field Bytes Description

0x06: status 7

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 03 00 01 00 03

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x03

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 03 00 00 05

5.6 Reset Wi-Fi connection

When receiving a reset command, the module will restart, perform an initialization
operation, and enter the pairing mode.

• The following figure shows how the working status of the module changes after
a reset.

25 / 177

5 Protocol list

:::important

• The reset command must be sent after the module initialization is completed.
Otherwise, the reset might not work. For more information, see Module initial-
ization.

• After the Wi-Fi and Bluetooth LE combo module receives the reset command,
both the Wi-Fi and Bluetooth LE networks are reset and ready for connection.
:::

• If you choose the module self-processing mode, implementing this protocol for
your MCU is not necessary.

When the module detects a low level on the GPIO input pin for more than five
seconds, it will trigger a reset action.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x04

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

26 / 177

https://developer.tuya.com/en/docs/iot/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization
https://developer.tuya.com/en/docs/iot/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization

5 Protocol list

For example, 55 aa 03 04 00 00 06

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x04

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 04 00 00 03

5.7 Reset Wi-Fi and select pairing mode

This command is similar to the previous one of resetting the Wi-Fi connection.

• The difference lies in that this command allows the MCU to select a pairing
mode after the network is reset.

• You can implement this protocol as needed.

• If you choose the module self-processing mode, implementing this protocol for
your MCU is not necessary.

:::important

– The reset command must be sent after the module initialization is com-
pleted. Otherwise, the reset might not work. For more information, see
Module initialization.

– If the MCU sets the n field in Query product information, the pairing mode
specified by this command does not work. :::

The MCU sends the following command.

27 / 177

https://developer.tuya.com/en/docs/iot/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x05

Data length 2 0x0001

Data 1

0x00: Enter EZ mode.

0x01: Enter AP mode.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, to enter EZ mode, the MCU will send the following command.

55 aa 03 05 00 01 00 08

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x05

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 05 00 00 04

28 / 177

5 Protocol list

5.8 Send commands

• The command sent by the module can contain Data units of multiple DPs.

• The command sending is processed asynchronously. The module parses the
received data and sends it to the MCU. The MCU executes the command ac-
cordingly and reports the changed DP status if required.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x06

Data length 2 Depends on the type and
number of data units.

Data N Data units

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if DP 3 of a boolean type is used for on/off control, and 1means to turn
on the device, the module will send the following command.

55 aa 00 06 00 05 03 01 00 01 01 10

5.9 Report status (async)

• This is an asynchronous command. The MCU uses it to report DP status to the
module, which can be triggered by three mechanisms.

– After the MCU executes the command received from the module, it reports
the changed DP status to the module.

– When the MCU proactively detects status changes of DPs, it reports the
changed DP status to the module.

29 / 177

5 Protocol list

– When the MCU receives the DP status query, it sends the status of all DPs
to the module.

• The MCU can report the status of multiple DPs. For more information about the
DP status data unit, see Data units.

:::important

• It is recommended to report the status of a DP when it is changed to ensure
stable data transmission. Try to avoid frequent status reporting for a short
period of time.

• When the device is in the idle or stable state, make sure the frequency of re-
porting the status of the same DP is appropriate. The recommended minimum
interval is one minute. :::

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x07

Data length 2 It depends on the types
and the number of data
units.

Data N Data units

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if DP 5 of a value type is used for reporting the current humidity, and
the current humidity is 30%, the MCU will send the following data to the module.

55 aa 03 07 00 08 05 02 00 04 00 00 00 1e 3a

Report data units of multiple DPs:

The DP 109 is of Boolean data type, and its value is 1.

30 / 177

5 Protocol list

The DP 102 is of string data type, and its value is 201804121507. The value is trans-
ferred in ASCII mode.

The MCU will send the following data to the module.

55 aa 03 07 00 15 6d 01 00 01 01 66 03 00 0c 32 30 31 38 30 34 31 32 31 35 30 37 62

5.10 Report status (sync)

• This is a synchronous command. The MCU reports DP status and then waits for
the result from the module.

• The module must respond to each status reporting message. The MCU must
not send a new reporting task until receiving a response from the module.

• If the data fails to be reported to the cloud due to poor network quality, the
module will return a failure code five seconds later. In this case, the MCU should
wait for more than five seconds.

• The MCU can report the status of multiple DPs. For more information about the
DP status data unit, see Data units.

:::important

• It is recommended to report the status of a DP when it is changed to ensure
stable data transmission. Try to avoid frequent status reporting for a short
period of time.

• When the device is in the idle or stable state, make sure the frequency of re-
porting the status of the same DP is appropriate. The recommended minimum
interval is one minute. :::

The MCU sends the following data.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x22

Data length 2 It depends on the types
and the number of data
units.

31 / 177

5 Protocol list

Field Bytes Description

Data N Data units

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, the status of Boolean DP 1 is true, the MCU reports the following data
to the module:

55 aa 03 22 00 05 02 01 00 01 01 2e

The module returns the following data.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x23

Data length 2 0x0001

Data Data

0x00: Failure

0x01: Success

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, the module returns 55 aa 00 23 00 01 01 24.

5.11 Report status (record-type)

• This is a synchronous command. The MCU reports DP status and then waits for
the result from the module.

32 / 177

5 Protocol list

• The module must respond to each status reporting message. The MCU must
not send a new reporting task until receiving a response from the module.

• If the data fails to be reported to the cloud due to poor network quality, the
module will return a failure code five seconds later. In this case, the MCU should
wait for more than five seconds.

• The MCU can report the status of multiple DPs. For more information about the
DP status data unit, see Data units.

• For devices with records or metering features, such as door locks and smart
plugs with energy monitoring, you can use this command to report the status
of the corresponding DPs. If a single record message contains the status of
multiple DPs, it should be reported in one packet.

• This type of status reporting only applies to Wi-Fi protocol currently. The Blue-
tooth protocol support for this type of status reporting will be added in the
firmware update in the future.

• Before using this type of status reporting, check if the current firmware sup-
ports it.

:::important

• The module does not cache the data that fails to be reported.
• It is recommended to report the status of a DP when it is changed to ensure
stable data transmission. Try to avoid frequent status reporting for a short
period of time.

• When the device is in the idle or stable state, make sure the frequency of re-
porting the status of the same DP is appropriate. The recommended minimum
interval is one minute. :::

The MCU sends the following data.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 It depends on the types
and the number of data
units.

33 / 177

5 Protocol list

Field Length Description

Data 1 0x0b (subcommand)

1 0x01 (default)

1 The time data carried in
the payload:

0x00: Use the time on
the module, which
requires that the module
have synced clock with
the server.

0x01: Use the local
time.

0x02: Use the GMT.

6 Date and time format:

Data[0] indicates the
year. 0x00 indicates the
year 2000.

Data[1] indicates the
month, ranging from 1 to
12.

Data[2] indicates the
day, ranging from 1 to 31.

Data[3] indicates the
hour, ranging from 0 to
23.

Data[4] indicates the
minute, ranging from 0 to
59.

Data[5] indicates the
second, ranging from 0 to
59.

N Data units

34 / 177

5 Protocol list

Field Length Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, for the Boolean DP of DP ID 1, if its status is true, and the GMT is
2022.02.18.16:27:06, the MCU reports 55 aa 03 34 00 0e 0b 01 02 16 02 12 10 1b 06 01
01 00 01 01 b1 to the module.

For example, for the value DP of DP ID 2, its status is 100; for the enum DP of DP ID
3, its status is 3. If the local time is 2022.02.22.11:22:33, the MCU reports 55 aa 03 34
00 16 0b 01 01 16 02 16 0b 16 21 02 02 04 00 00 00 64 03 04 01 03 40 to the module.

The module returns the following data.

Field Length Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x0b (subcommand)

1 The result of status
reporting:

0x00: Success

0x02: Failure

0x03: Invalid data

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 34 00 02 0b 00 40

35 / 177

5 Protocol list

5.12 Query DP status

• The module asynchronously queries the status of all object DPs. When the
MCU receives queries, it sends the status of DPs to the module. For more
information, see Report status.

• The module sends DP status queries when the following two events occur.

– When powered on for the first time, the module builds communication with
the MCU and then sends status queries.

– When the module detects the MCU is restarted or disconnected and then
goes online, the module sends status queries.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x08

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 08 00 00 07

5.13 Update MCU firmware

• You can specify the updatemethod for OTA MCU firmware updates. Themodule
only serves as the channel for OTA data transmission, without any data parsing
operation.

• The Tuya IoT Development Platform provides four update methods.

– Update notification: Users receive a firmware update notification on the

36 / 177

5 Protocol list

app and choose whether to install updates.
– Automatic update: Users will not receive any update pop-up window. The
module checks for firmware updates within one minute after power-on. If
any new version is available, it will automatically pull the updates. The
module checks for updates every 24 hours after the first-time power-on.

– Forced update: Users receive a firmware update notification on the app
and have no option but to update the firmware.

– Check for updates: Users will not receive a firmware update notification
on the app but need to manually check for new updates.

• The following flowchart shows how the OTA firmware update works. After the
module has sent all update packages, it will send the command 0x01 to query
the product information. The MCU must reply with the new MCU firmware ver-
sion number within one minute. The new version number should be consistent
with that configured on the Tuya IoT Development Platform.

37 / 177

5 Protocol list

38 / 177

5 Protocol list

5.13.1 Start OTA update

The OTA update can be initiated automatically or manually. For automatic updates,
when the module detects MCU firmware updates from the cloud, the transmission of
the update package automatically starts. For manual updates, the module initiates
updates only when updates are confirmed on the app.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0a

Data length 2 0x0004

Data 4 The size of the update
package. The data type
is an unsigned integer,
and the data is stored in
big-endian format.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 0a 00 04 00 00 68 00 75

It indicates the size of the update package is 26624 bytes, namely 26 KB.

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0a

Data length 2 0x0001

39 / 177

5 Protocol list

Field Bytes Description

Data 1 The update package size
of a single packet:

0x00: 256 bytes by
default, compatible with
legacy firmware

0x01: 512 bytes

0x02: 1024 bytes

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 0a 00 01 00 0d

5.13.2 Transmit update package

• The data format of update package transmission: packet offset + packet data.

• If the MCU receives the frame with a data length equal to 4 bytes and the
packet offset is equal to or greater than the size of firmware, the transmission
ends.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0b

Data length 2 0x0004+N

Data 4+N data[0] to data[3]: fixed
to packet offset.

40 / 177

5 Protocol list

Field Bytes Description

data[4] to data[n]: the
packet content.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example:

The size of the update file is 530 bytes. The MCU can skip the response to the last
packet.

• For the first packet, the packet offset is 0x00000000, and the packet length is 256
bytes. 55 aa 00 0b 01 04 00000000 xx⋯xx XX

• For the second packet, the packet offset is 0x00000100, and the packet length is
256 bytes. 55 aa 00 0b 01 04 00000100 xx⋯xx XX

• For the third packet, the packet offset is 0x00000200, and the packet length is 18
bytes. 55 aa 00 0b 00 16 00000200 xx⋯xx XX

• For the last packet, the packet offset is 0x00000212, and the packet length is 0
bytes. 55 aa 00 0b 00 04 00000212 xx⋯xx XX

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0b

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

41 / 177

5 Protocol list

For example, 55 aa 03 0b 00 00 0d

5.14 Get system time in GMT

• As the international standard of civil time, GMT is independent of the time zone
and DST.

• Before connecting to the network, the module returns success and valid time
data after the local timestamp is calibrated.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0c

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 0c 00 00 0e

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0c

Data length 2 0x0007

Data 7 The data length is 7
bytes.

42 / 177

5 Protocol list

Field Bytes Description

Data[0]: indicates
whether the system time
is obtained successfully.
0: failure. 1: success.

Data[1]: indicates the
year. 0x00 represents the
year 2000.

Data[2]: indicates the
month, ranging from 1 to
12.

Data[3]: indicates the
day, ranging from 1 to 31.

Data[4]: indicates the
hour, ranging from 0 to
23.

Data[5]: indicates the
minute, ranging from 0 to
59.

Data[6]: indicates the
second, ranging from 0 to
59.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the system time is 05:06:07 on April 19, 2016 (GMT), the module
will return the following command.

55 aa 00 0c 00 07 01 10 04 13 05 06 07 4c

43 / 177

5 Protocol list

5.15 Get local time

• The local time is calculated by adding the time zone offset and DST to the GMT.
The time zone is where the device is activated.

• Before connecting to the network, the module returns success and valid time
data after the local timestamp is calibrated.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x1c

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 1c 00 00 1e

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x1c

Data length 2 0x0008

Data 8 The data length is 8
bytes.

44 / 177

5 Protocol list

Field Bytes Description

Data[0]: indicates
whether the local time is
obtained successfully. 0:
failure. 1: success.

Data[1]: indicates the
year. 0x00 represents the
year 2000.

Data[2]: indicates the
month, ranging from 1 to
12.

Data[3]: indicates the
day, ranging from 1 to 31.

Data[4]: indicates the
hour, ranging from 0 to
23.

Data[5]: indicates the
minute, ranging from 0 to
59.

Data[6]: indicates the
second, ranging from 0 to
59.

Data[7]: indicates the
week, ranging from 1 to
7. 1 indicates Monday.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

• If the device is activated in mainland China, the local time is Beijing time
(GMT+08:00). For example, if the local time is 05:06:07 on April 19, 2016
(GMT+08:00), the module will return the following command. 55 aa 00 1c 00 08
01 10 04 13 05 06 07 02 5f

45 / 177

5 Protocol list

• If the device is activated in other countries or regions, the local time is the time
zone in which the device is located.

5.16 Test Wi-Fi functionality (scanning)

• The module scans the router whose SSID is tuya_mdev_test and returns the result
and signal strength in percentage.

• To prevent quality defects, it is recommended that the distance between the
router and the device under test should be about 5 meters. If the signal
strength is greater than or equal to 60%, the device is acceptable. The specific
testing conditions depend on your production line and environment.

:::important The test command must be sent after the module initialization is
completed. Otherwise, the command might not work. For more information,
see Module initialization. :::

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0e

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 0e 00 00 10

The module returns the following command.

46 / 177

https://developer.tuya.com/en/docs/iot/mcu-protocol?id=K9hrdpyujeotg#title-6-Module%20initialization

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0e

Data length 2 0x0002

Data 2 The data length is 2
bytes.

Data[0]: 0x00 indicates
failure and 0x01 indicates
success.

If Data[0] is 0x01,
Data[1] indicates the
signal strength, ranging
from 0 to 100, 0 for the
weakest and 100 for the
strongest.

If Data[0] is 0x00,
Data[1] indicates failure
reasons. 0x00 indicates
the specified SSID is not
found. 0x01 indicates the
authorization key is not
flashed to the module.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the module does not find the specified SSID, it returns 55 aa 00 0e
00 02 00 00 0f.

47 / 177

5 Protocol list

5.17 Get module’s memory

Get the remaining memory of the Wi-Fi module.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x0f

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 0f 00 00 11

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x0f

Data length 2 0x0004

Data 4 The data length is 4
bytes. The value is
represented in big-endian
format.

For example,
0x00 0x00 0x28 0x00
represents 10240 bytes
remaining memory.

48 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the remaining memory size is 53,328 bytes, the module returns
55 aa 00 0f 00 04 50 d0 00 00 32.

5.18 (Optional) Enable weather services

Enable the module to get the weather data.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x20

Data length 2 N((L+K)+(L+K)…)

Data n L: consumes 1 byte and
indicates the length of K.

K: indicates the name of
the request parameter.

Example:

L: 0x06, K: w.temp.

L: 0x06, K: w.pm25.

L: 0x0a, K: w.humidity.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

49 / 177

5 Protocol list

For more information about the weather data, see Weather Service. For example,
if the MCU requests w.temp and w.pm25, it sends 55 aa 03 20 00 0e 06 77 2e 74 65 6d 70
06 77 2e 70 6d 32 35 80.

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x20

Data length 2 0x0002

Data 2 Data[0]:

0x00: failure.

0x01: success.
Data[1]:

0x00: no error.

0x01: invalid data
format.

0x02: exception.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 20 00 02 01 00 22

5.19 (Optional) Send weather data

The module will send the weather data immediately as the weather service is en-
abled and then sends data every 30 minutes.

The module sends the following command.

50 / 177

https://developer.tuya.com/en/docs/iot/weather-function-description?id=Ka6dcs2cw4avp

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x21

Data length 2 N((LKTLV)+(LKTLV)+…)

Data Data

0x00: indicates a
failure.

0x01: indicates an
unauthorized parameter
service. Check whether
you have subscribed to
specific weather services.

0x01: indicates a
success.

L: the length of the
parameter name.

K: the name of the
parameter.

T: 0x00 indicates an
integer and 0x01
indicates a string.

L: the length of the field
name.

V: the value of the field.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

The MCU returns the following command.

51 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x21

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

:::info

• If a request contains two request parameters such as w.temp and w.pm25, only w.
temp returns a value, you need to check whether the request parameter name
is correct.

• For more information about the weather data, see Weather Service. :::

For example, if the weather data is w.humidity:69, w.temp:32, and w.pm25:10, the
module will send the following command. 55 aa 00 21 00 30 01 0a 77 2e 68 75 6d 69
64 69 74 79 00 04 00 00 00 45 06 77 2e 74 65 6d 70 00 04 00 00 00 20 06 77 2e 70 6d 32
35 00 04 00 00 00 10 1e 5c

5.20 Proactively request weather data

• Besides passively receiving weather data from the module, the MCU can proac-
tively request weather data using this command.

• The minimum request interval is one minute. If the MCU sends multiple re-
quests within one minute, the request is only processed once.

• The module only uses this command to confirm a request and sends weather
data still through the command 0x21.

The MCU sends the following command.

52 / 177

https://developer.tuya.com/en/docs/iot/weather-function-description?id=Ka6dcs2cw4avp

5 Protocol list

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x03 (subcommand)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 01 03 3a

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x03 (subcommand)

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 34 00 02 03 00 38

53 / 177

5 Protocol list

5.21 (Optional) Get Wi-Fi signal strength

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x24

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 24 00 00 26

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x24

Data length 2 0x0001

Data Data 0x00: failure.

A value less than 0:
indicates signal strength,
such as -60 dB.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

54 / 177

5 Protocol list

For example, if the value of RSSI is -20 dB, the module returns 55 aa 00 24 00 01 ec
10.

5.22 (Optional) Disable heartbeats

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x25

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 25 00 00 27

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x25

Data length 2 0

Data N None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

55 / 177

5 Protocol list

For example, 55 aa 00 25 00 00 24

Before the module goes to sleep for reducing power consumption, the MCU can send
this command to notify the module to disable the heartbeat. Because heartbeats
are required for building communication between the module and the MCU, this
command must not be sent when the device is just powered on.

5.23 (Optional) Pairing via serial port

• If your device pairing solution is implementing by the communication between
the mobile app and the module, implementing this command is not necessary.

• This command applies to local pairing. You can get the pairing information
from Tuya’s app and send them to the module through serial communication
to complete pairing.

• To be paired via serial port, the module must be in the state of waiting for
pairing.

• The module will use the received information to connect to the router and reg-
ister in the cloud.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2A

Data length 2 xx

Data Data {"s":"xxx","p":"yyy","t":"
zzz"}

s: SSID

p: password

t: token, generated by
the mobile app.

56 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the pairing information is {"s":"xxx","p":"12345678","t":"zzz"}, the
MCU will return the following command. 55 aa 03 2a 00 24 7b 22 73 22 3a 22 78 78 78
22 2C 22 70 22 3a 22 31 32 33 34 35 36 37 38 22 2c 22 74 22 3a 22 7a 7a 7a 22 7d B7

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2A

Data length 2 0x0001

Data x

0x00: Data is received.

0x01: The module is
not waiting for pairing.

0x02: JSON data is
invalid.

0x03: Other errors
occur.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 2a 00 01 01 2b

57 / 177

5 Protocol list

5.24 Get Wi-Fi status

Network status Description Status value

Status 1 Pairing in EZ mode. 0x00

Status 2 Pairing in AP mode. 0x01

Status 3 The Wi-Fi network is set
up, but the device is not
connected to the router.

0x02

Status 4 The Wi-Fi network is set
up, and the device is
connected to the router.

0x03

Status 5 The device is connected
to the cloud.

0x04

Status 6 The device is in low
power mode.

0x05

Status 7 EZ mode and AP mode
coexist.

0x06

The status definition must be consistent with that in Report network status.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2B

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

58 / 177

5 Protocol list

For example, 55 aa 03 2b 00 00 2d

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2B

Data length 2 0x0001

Data 1

0x00: Pairing in EZ
mode.

0x01: Pairing in AP
mode.

0x02: The Wi-Fi
network is set up, but the
device is not connected
to the router.

0x03: The Wi-Fi
network is set up, and
the device is connected
to the router.

0x04: The device is
connected to the router
and the cloud.

0x05: The device is in
low power mode.

0x06: EZ mode and AP
mode coexist.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

59 / 177

5 Protocol list

For example, if the device is connected to the router and the cloud, the module
returns 55 aa 00 2b 00 01 04 2f.

5.25 (Optional) Map streaming for robot vacuum

• Only specific modules support map streaming services for robot vacuums,
which must be purchased to use.

• This service serves as a quick channel for the map data transmission between
the mobile app and the robot vacuum.

• The map data is identified by the map ID. Data of the samemap ID is processed
as one cleaning task by the mobile app.

• The robot vacuum goes around the whole house during cleaning. However,
if the wireless signals in some areas are weak, data upload might fail. In this
case, with sufficient memory, themodule can store 24 pieces of the data cache.

60 / 177

5 Protocol list

61 / 177

5 Protocol list

5.25.1 Map data streaming

• For streaming data of a complete map, the map data offset indicates the total
length of data that has been sent.

• The maximum serial buffer of the module is 1024 bytes. A packet of map data
cannot exceed 1024 bytes. The recommended size of each packet is 512 bytes.

• The map ID indicates a cleaning map. The robot builds a map of the cleaning
area each time it starts a new cleaning job that a new map ID will be assigned
to. When the map ID is changed, the map data displayed on the mobile app
will be replaced with the current map.

• After data transmission starts, the module will stop sending heartbeats to en-
sure the map data traffic is prioritized. The heartbeat will not be resumed
unless the module is restarted after a shutdown.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x28

Data length 2 0x0006+N

Data 2 data[0] to data[1]: the
map ID, an identifier of a
map created for a
cleaning task.

4 data[2] to data[5]: the
map data offset, which is
0 for the first packet.

N data[6] to data[N]: the
entity data in big-endian
format.

62 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the map ID is 123 and the map data offset is 0, the MCU will send the
following command. 55 aa 03 28 xx xx 00 7b 00 00 00 00 xx xx xx xx xx

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x28

Data length 2 0x0001

Data 1

0x00: Success.

0x01: Streaming
service is not enabled.

0x02: Failed to connect
to the streaming server.

0x03: Data
transmission times out.

0x04: Data length
error.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 28 00 01 00 28

63 / 177

5 Protocol list

5.26 (Optional) Map data streaming for multiple maps

• Only specific modules support map streaming services for robot vacuums,
which must be purchased to use.

• This service serves as a quick channel for the map data transmission between
the mobile app and the robot vacuum.

• This command applies to transmitting themap that is made up of several maps.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x30

Data length 2 0x0009+N

Data 1 The map service protocol:
0x00

2 Map service session ID:
an identifier of a map
displayed on the mobile
app.

6 BUF[0]: the ID of a
sub-map. A map session
can be made up of
several maps, such as
route maps.

BUF[1]: The processing
method for the map data
of a sub-map ID. 0x00:
The map data is
accumulated. 0x01: The
map data is cleared.

64 / 177

5 Protocol list

Field Bytes Description

BUF[2] to BUF[5]: the
sub-map data offset,
which is 0 for the first
packet.

N The entity data in
big-endian format.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 30 00 xx 00 00 00 01 00 00 00 00 xx xx xx xx xx xx

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x30

Data length 2 0x0001

Data 1 0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 30 00 01 00 33

65 / 177

5 Protocol list

5.27 (Optional) Get the map session ID

• This command is a supplement to the map streaming service for single and
multiple maps.

• The module manages the map session ID. Before the MCU transmits a new
map, it will request a map session ID from the module and include the allocated
session ID in each session data transmission. The sub-map ID is incremented
by 1 as a new sub-map is added, such as 0x01, 0x02, 0x03, and more.

• If you do not want the module to manage the session ID, implementing this
command is not necessary.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x06 (subcommand)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 30 00 01 00 33

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0004

66 / 177

5 Protocol list

Field Bytes Description

Data 1 0x06 (subcommand)

1 Transmission result:

0x00: Success.

0x01: The map streaming
service is not enabled.

0x02: Failed to get the
session ID.

2 The map session ID. If the
transmission fails, this
data is invalid.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 34 00 04 06 00 00 00 3d

5.28 Test Wi-Fi functionality (connection)

• The MCU sends the SSID and password of a router to the module. The module
scans for this designated router.

• The MCU determines whether themodule is connected to the designated router
based on the received network status. The test is considered failed if the MCU
receives a failure or does not receive a result of a successful connection within
15 seconds.

• The MCU can send the test command to enable the module to enter test mode
again even after a successful test. However, if the MCU does not receive a
result of a successful connection, it indicates the module is in the test progress.
In this case, the module must be reset or restarted, and then the MCU sends
the test command.

• Make sure that the module has not paired. Otherwise, the test will fail.

67 / 177

5 Protocol list

• Before the test, make sure that the MCU has responded to the heartbeat and
product information query from the module and the initialization is completed.

• The maximum length of the SSID and password is 32 bytes and 64 bytes re-
spectively.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2C

Data length 2 n

Data n {"ssid":"xxx","password":"
xxxxxxxx"}

ssid: the name of the
router.

password: the password
of the router.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the SSID and password is {"ssid":"xxx","password":"12345678"}, the
MCU will send the following command. 55 aa 03 2c 00 24 7b 22 73 73 69 64 22 3a 22
78 78 78 22 2c 22 70 61 73 73 77 6f 72 64 22 3a 22 31 32 33 34 35 36 37 38 22 7d 2c

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2C

68 / 177

5 Protocol list

Field Bytes Description

Data length 2 0x0001

Data 1 The data length is one
byte.

Data[0]:

0x00: Failed to receive
the router information.
Check whether the JSON
packet is complete.

0x01: router
information is received.
Regarding the connection
result, view the network
status .

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 2c 00 01 01 2d

5.29 Get module’s MAC address

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2d

Data length 2 0x0000

Data Data None

69 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 2d 00 00 2f

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2d

Data length 2 0x0007

Data Data Data[0]: indicates
whether the MAC address
is obtained successfully.

0x00 indicates success
and the next 6 bytes
denote a valid MAC
address.

0x01 indicates failure
and the next 6 bytes
denote an invalid MAC
address. Data[1] to
Data[6]: indicates the
valid MAC address of the
module on a success.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

70 / 177

5 Protocol list

For example, if the MAC address is 508A0E3A2D9, the module returns the following
command. 55 aa 00 2d 00 07 00 50 8a 06 e3 a2 d9 71

5.30 (Optional) IR status notification

IR status Description Status value

Status 1 IR code is being sent. 0x00

Status 2 IR code is sent. 0x01

Status 3 IR learning is in progress. 0x02

Status 4 IR learning is completed. 0x03

• You can configure the IR feature on the Tuya IoT Development Platform or con-
tact your project manager to enable this feature.

• The short retention of IR code availability determines that serial data is sent
directly without a resending mechanism.

• You can configure the IR status indication as needed.

• The IR TX and RX pins require two I/Os. If your module processes network
events itself, do not use the IR pins for other configurations.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2e

Data length 2 0x0001

Data Data IR status indication:

0x00: status 1

0x01: status 2

0x02: status 3

0x03: status 4

71 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 2e 00 01 00 2e

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2e

Data length 2 0x0000

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 2e 00 00 30

72 / 177

5 Protocol list

5.31 (Optional) IR functionality test

• Only the unpaired module can enter IR test mode.

• The module enters IR learning status as it enters test mode.

• Once the module enters test mode, it is in IR learning status and keeps trans-
mitting the learned code until the module is paired or powered off.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x2f

Data length 2 0x0000

73 / 177

5 Protocol list

Field Bytes Description

Data Data None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 2f 00 00 31

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x2f

Data length 2 0x0001

Data Data

0x00: The module
successfully enters test
mode.

0x01: The module
failed to enter test mode.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 2f 00 01 00 2f

74 / 177

5 Protocol list

5.32 (Optional) RF functionality

• To use RF functionality, you need to enable the RF remote control in the abv
field through the command 0x3700.

• When you use the RF code, multiple key values might be transmitted in a single
operation. According to the maximum data length of the key value, the MCU
serial buffer must be larger than 256 bytes. The MCU can use the buf field in
the command 0x3700 to notify the module of the MCU serial buffer size. When
multiple key values are to be transmitted in a single operation, the module can
determine whether to transmit data inmultiple packets based on theMCU serial
buffer. The minimum packet size is a key value. For transmission of multiple
key values, data of all key values is sent using one command by default.

• Since the MCU executes RF commands, the module is not intended to process
status indication itself.

5.32.1 RF learning control

• The module sends commands to control the RF learning status of the MCU.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x33

Data length 2 0x0002

Data 1 Subcommand: 0x01 (RF
learning command)

1 RF leaning status:

0x01: enter the RF
learning status.

0x02: exit the RF
learning status.

75 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 33 00 02 01 01 36

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x33

Data length 2 0x0003

Data 1 Subcommand: 0x01

1 RF leaning status:

0x01: enter the RF
learning status.

1 Acknowledgement status:

0x00: Success.

0x02: Exit the RF
learning status.

0x01: Failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 33 00 03 01 01 00 3a

76 / 177

5 Protocol list

5.32.2 Send RF data

• A piece of RF data can consist of multiple key values. If a piece of RF data
exceeds the serial buffer capacity, key values can be transmitted in multiple
packets.

• RF data has a fixed encoding. The transmission time of each bit depends on
the transmission rate. If a bit is 1, data is transmitted. If a bit is 0, data is not
transmitted and the high bit is transmitted first.

• The MCU only needs to parse the Data field without the fields of frequency and
transmission rate.

The module sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x33

Data length 2 0x07+n*(T+D+I+L+C)

Data 1 Subcommand: 0x02

1 Type:

0x00: send code
library

0x01: send learning
code

1 The number of key
values: n

1 The serial number of the
key value offset:

0xFF: send all key
values in one packet.

77 / 177

5 Protocol list

Field Length Description

0x00 to 0xFE: offset
value, which is 0 for the
first packet. The number
of key values for the last
packet is -1.

1 Frequency:

0: 315 MHz

1: 433.92 MHz

2 Transmission rate: such
as 2,777 bps

N Data

T: stands for times.
It is 1 byte in length
and indicates the number
of transmission times. If
the module sends
learning code, this data
is valid and defaults to
0x00.

D: stands for delay.
It is 2 bytes in length
and indicates the interval
between key values. If
the module sends
learning code, this data
is valid and defaults to
0x0000.

78 / 177

5 Protocol list

Field Length Description

I: stands for
intervals. It is 2 bytes
in length and indicates
the transmission interval.
If the module sends
learning code, this data
is valid and defaults to
0x0000.

L: stands for code
length. It is 2 bytes in
length and indicates the
length of data sent by the
RF.

C: stands for code. It
is N byte(s) in length
and indicates the data
sent by the RF.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 33 00 xx 02 01 00 ff 00 0a d9 00 00 00 00 00 00 xx xx xx xx xx
xx xx

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x33

Data length 2 0x0002

Data 1 Subcommand: 0x02

79 / 177

5 Protocol list

Field Bytes Description

1 Acknowledgement status:

0x00: Success.

0x01: Failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 33 00 02 02 00 36

5.32.3 Report RF learning

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x33

Data length 2 0x0002+N

Data 1 Subcommand: 0x03

1 Learning result:

0: success.

1: failure.

N Data content:

If learning failed, the MCU
will not send this field. If
learning succeeded, the
MCU can send data in a
custom format.

80 / 177

5 Protocol list

Field Length Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 33 xx xx 03 00 xx xx xx xx xx xx

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x33

Data length 2 0x0002

Data 1 Subcommand: 0x03

1 Acknowledgement status:

0x00: Success.

0x01: Failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 33 00 02 03 00 37

5.33 (Optional) File transfer service

:::important

• File transfer is not executed when MCU OTA updates are in progress. This com-
mand supports the transfer of large files and various file formats.

81 / 177

5 Protocol list

• To enable the file transfer feature, check whether the firmware supports this
feature. :::

5.33.1 File download

Block diagram of file download

82 / 177

5 Protocol list

83 / 177

5 Protocol list

• This diagram shows the download progress of a single file. Downloading multi-
ple files work the same way, which repeats the process until all files are down-
loaded.

• During file transfer, if the module exits the transfer process due to a time out,
the whole process stops.

• During file transfer, heartbeat interaction and DP data sending stop.

5.33.1.1 File download notification

• The module sends this command to notify the MCU of a file download task.
The MCU returns whether to execute the download task based on the current
operation.

• This command does not apply to download tasks for robot vacuum voice files.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x01

1 0x01: fixed to 0x01

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 37 00 02 01 01 3a

The MCU returns the following command.

84 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0003

Data 1 Subcommand: 0x01

1 The module returns
whether to execute file
download.

0x01: reject

0x00: accept

1 If the MCU returns 0x00,
this field indicates the file
size in each packet. The
available parameters are
as follows.

0x00: 256 bytes

0x01: 512 bytes

0x02: 1,024 bytes

0x03: 2,048 bytes

0x04: 3,072 bytes

0x05: 4,096 bytes

0x06: 5,120 bytes

0x07: 10,240 bytes If
the MCU returns 0x01, this
field indicates the
download task is
rejected. For more
information about
reasons, see Appendix 2 .

85 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 37 00 03 01 00 07 41

5.33.1.2 File information sync

• The module sends this command to notify the MCU of the information of the
download file.

• This command does not apply to download tasks for robot vacuum voice files.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0001+N

Data 1 Subcommand: 0x02

N

num: the number of files in
the download task.

name: the file name.

id: the serial number of
the file.

len: the file length.

type: the file type.

file_info: the custom
data of each file.

86 / 177

5 Protocol list

Field Bytes Description

ext_info: the custom
data, used to extend
data.

act: the specific actions
performed in the
download task.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Field description

• Name: the file name, which can be customized.

• Id: the file ID.

• Len: the file length.

• Type: the file type, such as TXT and JPG. For more information about file for-
mats, see Appendix 5.

• File_info: the custom data of each file. You can use this field to add self-
defined data. The module will transfer the raw data of this field to the MCU.

• Ext_info: the custom data of the download file. You can use this field to add
self-defined information for download operations. The module will transfer the
raw data of this field to the MCU.

• Act: the action performed in the download task, such as print and audio play.
The following table lists the definition.

Name Print Text display Audio play Video play Store

Type value 1 2 3 4 5

Note that if you do not specify a value for this field, the module will not transmit

87 / 177

5 Protocol list

this field.

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x02

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 37 00 02 02 00 3d

5.33.1.3 File transfer

• The data format of the file transfer: packet offset (unsigned short) + packet
data.

• If the MCU receives a frame with a data length equal to 5 bytes and the packet
offset is equal to or greater than the file size, the packet transmission ends.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

88 / 177

5 Protocol list

Field Bytes Description

Data length 2 0x02 + 0x0004 + packet
length

Data 1 Subcommand: 0x03

1 The serial number of the
file in transfer. The first
file is 1. The second one
is 2, and so on.

4 The packet offset.

N The packet content.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the serial number of the file is 1 and packet offset is 0, themodule will
send the following command. 55 aa 00 37 xx xx 03 01 00 00 00 00 00 xx xx xx xx xx

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x03

1

0x00: success.

0x01: failure.

89 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 37 00 02 03 00 3e

5.33.1.4 (Optional) Execution results The MCU can use this command to send execu-
tion status to the module.

This command is optional. You can implement it if your product requires execution
feedback. Data of act is also optional, depending on your product features.

Data of id corresponds to the id field (serial number of the file) of the command
0x3702.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x01+l+L+2

Data 1 Subcommand: 0x05

1 The length of id.

L The ID of a file,
corresponding to the data
of id field of the
command 0x3702.

1 act:

0x00: Task is executed
successfully.

90 / 177

5 Protocol list

Field Bytes Description

0x01: Task is in
progress.

0x02: Failed to execute
the task.

1 If act is 0x00, set this field
to 0x00.

If act is 0x01, set this field
to the progress in
percentage. For example,
if the progress is 20%, set
the field to the value 20.

If act is 0x02, this field
indicates the error code.
For more information, see
Appendix 2 .

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if a printer is printing a file of ID 10 and the task progress is at 20%,
the MCU will send the following command.

55 aa 03 37 05 05 01 0a 01 14 63

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x05

91 / 177

5 Protocol list

Field Bytes Description

1

0x00: success.

0x01: invalid data.

0x02: failed to report
data.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 37 00 02 05 00 3d

92 / 177

5 Protocol list

93 / 177

5 Protocol list

5.33.2 File upload service

94 / 177

5 Protocol list

5.33.2.1 Initiate file upload The MCU sends this command to the module to request
uploading files.

The MCU sends the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0001+N

Data 1 Subcommand: 0x06

N {“num”:n; the number
of files in the download
task.”files”[]“ext_info”:
“xxxx”}

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

The module returns the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0002

Data 1 Subcommand: 0x06

1 Ret: The result of
command execution.

0x00: Success

0x01: Failure

95 / 177

5 Protocol list

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

5.33.2.2 File upload :::info

• Data format: packet offset (unsigned short) + payload.
• When the module receives a frame with a data length equal to 4 bytes and the
packet offset is greater than or equal to the size of the update, the transfer is
completed. :::

The MCU sends the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x00020x0004 + packet
length

Data 1 Sub-command: 0x07

2 The ID of the file being
transferred.

4 File offset.

N The packet content.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

The module sends the following data.

96 / 177

5 Protocol list

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0003

Data 1 Subcommand: 0x06

1

Ret: The result of
operation.

0x00: Success

0x01: Failure

0x02: Canceled

1

If Ret is 0x00, 0x00 is
returned.

If Ret is 0x01, a value
from 0x01 to 0x0FF is
returned, indicating the
failure reason. For more
information, see
Appendix 3 .

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

5.33.3 The MCU proactively get or update file transfer status

• If the MCU proactively interrupts the file transfer, it can use this command to
notify the module of the current transfer status.

The MCU sends the following command.

97 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0003

Data 1 Subcommand: 0x04

1

0x00: All transfer tasks
are terminated.

0x01: Current transfer
task is terminated. When
multiple tasks are in the
queue, this command will
terminate the current
task and start the next
task.

0x02: Get the transfer
status.

……

1

0x00/0x01: The reason
for task termination. For
more information, see
Appendix 2 .

Other values: Set this
field to 0x00.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 37 00 03 04 02 00 42

98 / 177

5 Protocol list

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0003

Data 1 Subcommand: 0x04

1

0x01: Terminate file
transfer.

0x02: Get the current
file transfer status.

1

0x01: indicates
execution result.

0x00: success.

0x01: failure.

0x02: indicates the file
transfer status. For more
information, see
Appendix 3 .

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 37 00 03 04 02 00 3f

99 / 177

5 Protocol list

5.33.4 File transfer result

The module can use this command to notify the MCU of the result of file download
or upload.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x37

Data length 2 0x0004

Data 1 Subcommand: 0x08

1

0x01: file download.

0x02: file upload.

1 Execution result.

0x00: success.

0x01: failure.

1 If the execution result is
0x00, 0x00 will be returned.
If the execution result is
0x01, a failure reason will
be returned. For more
information, see
Appendix 3 .

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 37 00 04 08 01 00 00 43

The MCU returns the following command.

100 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x37

Data length 2 0x0001

Data 1 Subcommand: 0x08

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 37 00 01 08 42

5.34 (Optional) Voice features

The protocols in this section only apply to the voice module VWXR2.

5.34.1 (Optional) Get voice status

The voice module will send the voice status to the MCU. Alternatively, the MCU can
proactively query the voice status.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x60

Data length 2 0x0000

Data 0 None

101 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 60 00 00 62

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x60

Data length 2 0x0001

Data 1 Voice status code.

0: idle.

1: Mic is muted.

2: woken up.

3: recording voices.

4: recognizing voices.

5: voice is recognized.

6: failed to recognize
voices.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 60 00 01 00 60

102 / 177

5 Protocol list

5.34.2 (Optional) Mute the mic

The MCU can use this command to mute the mic or query the mic status.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x61

Data length 2 0x0001

Data 1

0: Turn on the mic.

1: Mute the mic.

0xA0: Query the mic
status.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 61 00 01 00 64

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x61

Data length 2 0x0001

Data 1

0: Mic is on.

1: Mic is muted.

103 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 61 00 01 00 61

5.34.3 (Optional) Adjust the speaker volume

The MCU can use this command to adjust the speaker volume or query the current
volume.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x62

Data length 2 0x0001

Data 1

Volume: 0 to 10.

Query volume: 0xA0

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 62 00 01 03 68

The module returns the following command.

104 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x62

Data length 2 0x0001

Data 1 Volume: 0 to 10.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 62 00 01 03 65

5.34.4 (Optional) Test audio functionality

Record voices and while play the recording. Use acoustic equipment to compare
the input and output audio signals.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x63

Data length 2 0x0001

Data 1

0: Disable audio test.

1: Perform audio loop
test on mic1.

2: Perform audio loop
test on mic2.

105 / 177

5 Protocol list

Field Bytes Description

0xA0: Query the test
status.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 63 00 01 02 68

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x63

Data length 2 0x0001

Data 1

0: Disable audio test.

1: Perform audio loop
test on mic1.

2: Perform audio loop
test on mic2.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 63 00 01 02 65

106 / 177

5 Protocol list

5.34.5 (Optional) Test waking up voice assistant

After the voice module enters test mode, the wake word must be delivered within
10 seconds. If the module is not woken up within 10 seconds, it returns a failure
result.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x64

Data length 2 0x0000

Data 0 None

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 64 00 00 66

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x64

Data length 2 0x0001

Data 0

0: failed to be woken
up.

1: woken up
successfully.

107 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 64 00 01 01 65

5.34.6 Extended features

You can implement the following extended features for your voice modules.

• Notifications and settings of play/pause, Bluetooth on/off, local alarm, and
grouped voice controls.

• Play/pause: applies to songs, jokes, and more.
• Bluetooth on/off: turns on or off Bluetooth of a Bluetooth speaker.
• Local alarm: sync alarms set by the voice control to the mobile app.
• Grouped voice controls: notifications of voice control commands. For example,
play next or previous media.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 N

Data 1 Subcommand: 0x00

Data:

{ play: play/pause.

“play”:true, true: play. false: pause.

“bt_play”:true bt_play: turn on or off
Bluetooth.

108 / 177

5 Protocol list

Field Bytes Description

,“ctrl_group”:“xxxx”} true: turn on Bluetooth.
false: turn off Bluetooth.

ctrl_group: grouped
control commands.

next: play the next media.
pre: play the previous
media.

You can only
implement the
play/pause and Bluetooth
on/off features on the
MCU.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"play":true,"bt_play":true,"ctrl_group":"next"}, the MCU
will send the following command. 55 aa 03 65 00 31 00 7b 22 70 6c 61 79 22 3a 74 72
75 65 2c 22 62 74 5f 70 6c 61 79 22 3a 74 72 75 65 2c 22 63 74 72 6c 5f 67 72 6f 75 70
22 3a 22 6e 65 78 74 22 7d c7

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x0002

Data 1 Subcommand: 0x00

1

0x00: success.

109 / 177

5 Protocol list

Field Bytes Description

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 00 00 66

5.34.6.1 Status notification The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 1+N

Data 1 Subcommand: 0x01

Data: {

“play”:true, play: play/pause. true:
play. false: pause.

“bt_play”:true,”alarm”
:“xxxx”,“ctrl_group”:
“xxxx”}

bt_play: turn on or off
Bluetooth. true: turn on
Bluetooth. false: turn off
Bluetooth.

alarm: local alarm. xxx
is a string.

ctrl_group: grouped
voice commands. xxx is a
string.

110 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"play":true,"bt_play":true,"ctrl_group":"next","alarm":"
xxx"}, the module sends the following command. 55 aa 00 65 00 3f 01 7b 22 70 6c 61
79 22 3a 74 72 75 65 2c 22 62 74 5f 70 6c 61 79 22 3a 74 72 75 65 2c 22 63 74 72 6c 5

f 67 72 6f 75 70 22 3a 22 6e 65 78 74 22 2c 22 61 6c 61 72 6d 22 3a 22 78 78 78 22 7d
36

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 2

Data 1 Subcommand: 0x01

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 01 00 6a

5.34.6.2 Wake up the module

• The MCU can send this command to wake up the module.

111 / 177

5 Protocol list

• This command only applies to modules that run on Linux and are interfaced
using the general protocols.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x02

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 01 02 6a

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x02

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

112 / 177

5 Protocol list

For example, 55 aa 00 65 00 02 02 00 68

5.34.6.3 Notification of turning on/off automatic speech recognition (ASR) After this
feature is enabled, ASR processed texts will be transmitted through the command
0x6504.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x03

1

0x00: turn off ASR.

0x01: turn on ASR.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 03 00 6c

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x03

1

113 / 177

5 Protocol list

Field Bytes Description

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 03 00 69

5.34.6.4 Notification of ASR processing The module sends the following com-
mand.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0xXX

Data 1 Subcommand: 0x04

1

text: content in UTF-8

speaker

id

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"text":"xx","speaker":"human", "id":1171}, the module will
send the following command. 55 aa 03 65 00 2b 04 7b 22 74 65 78 74 22 3a 22 78 78
22 2c 22 73 70 65 61 6b 65 72 22 3a 22 68 75 6d 61 6e 22 2c 20 22 69 64 22 3a 31 31 37

114 / 177

5 Protocol list

31 7d 69

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x04

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 01 04 69

5.34.6.5 Query the current playing media

• The MCU can use this command to query the current playing media.
• The returned content is represented in UTF-8 format and transmitted in hex.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x05

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

115 / 177

5 Protocol list

For example, 55 aa 03 65 00 01 05 6d

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x0002+N

Data 1 Subcommand: 0x05

1 Data[0]:

0x00: success.

0x01: failure.

N If the result is 0x01, this
part is empty.

If the result is 0x00, the
data is artist and
trackTitle.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"artist":"Beethoven", "trackTitle":"Serenade in D major,
Op.8"}, the module sends the following command. 55 aa 00 65 00 34 05 00 7b 22 61
72 74 69 73 74 22 3a 22 e8 96 9b e4 b9 8b e8 b0 a6 22 2c 22 74 72 61 63 6b 54 69 74 6c
65 22 3a 22 e5 8a a8 e7 89 a9 e4 b8 96 e7 95 8c 22 7d dc

5.34.6.6 Report status to the module The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

116 / 177

5 Protocol list

Field Bytes Description

Version 1 0x03

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x06

0x00: online.

0x01: Bluetooth
connected.

0x02: in-call

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 06 00 6f

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x06

1

0x00: success.

0x01: failure.

117 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 06 00 6c

5.34.6.7 Report recording (auto) The MCU can send this command to trigger voice
recording. The module will pick up voices and automatically end the recording. The
recording can be up to 10 seconds long in one go.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x02

Data 1 Sub-command: 0x07

0x01: start recording.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 07 01 71

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

118 / 177

5 Protocol list

Field Bytes Description

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Sub-command: 0x07

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 07 00 6d

5.34.6.8 Report recording (manual) The MCU can send this command to trigger voice
recording but the recording must be ended manually. The recording can be up to
10 seconds long in one go.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x08

1

0x00: recording
stopped.

119 / 177

5 Protocol list

Field Bytes Description

0x01: recording
started.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 08 00 71

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x08

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 08 00 6e

5.34.6.9 Turn on/off alarms After this feature is enabled, alarm data will be transmit-
ted through the command 0x650A.

The MCU sends the following command.

120 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x09

1

0x00: disabled.

0x01: enabled.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 09 01 73

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x09

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

121 / 177

5 Protocol list

For example, 55 aa 00 65 00 02 09 00 6f

5.34.6.10 Send alarms The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0xXX

Data 1 Subcommand: 0x0A

Data[0]: the number of
alarms.

Data[1]: the operation
type. 0: poll. 1: add. 2:
delete. 3: update.

The following is the
repeated content.

Data[2] to Data[7]: the
alarm ID.

Data[8]: the year.

Data[9]: the month.

Data[10]: the day.

Data[11]: the hour.

Data[12]: the minute.

Data[13]: the schedule
rule.

bit7 to bit1 represent
Sunday through Saturday.

If a bit is 1, it means an
alarm is scheduled to
repeat on that day.

122 / 177

5 Protocol list

Field Bytes Description

0000000 indicates a
one-time alarm. bit0
represents alarm status.
0: enabled. 1: dismissed.

For example, 0111000
indicates an alarm is
repeated every Monday,
Tuesday, and Wednesday.
Data[14]: alarm ringtone.
0: online ringtone. Other
values: local ringtone.

Data[15] to Data[35]: a
ringtone description,
used to match a song.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if a one-time alarm with ID 1 is scheduled to go off at 17:32 on August
23, 2021, the module will send the following command.

55 aa 00 65 00 24 0a 01 01 00 00 00 00 00 01 15 08 17 11 20 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 fa

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x0A

123 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 01 0a 72

5.34.6.11 Query alarm list The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x0B

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 01 0b 73

The module returns an alarm list through the command 0x650A.

5.34.6.12 Turn on/off local alarms The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

124 / 177

5 Protocol list

Field Bytes Description

Data length 2 0x02

Data 1 Subcommand: 0x0C

0x00: Turn off a local
alarm.

0x01: Turn on a local
alarm.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 02 0c 00 75

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x0C

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

125 / 177

5 Protocol list

For example, 55 aa 00 65 00 02 0c 00 72

5.34.6.13 Manage alarms The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0xXX

Data 1 Subcommand: 0x0D

0x01: Set an alarm.

0x02: Edit an alarm.

0x03: Delete an alarm.

0x04: Turn on an
alarm.

0x05: Turn off an
alarm.

Data is in JSON format.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"date":"20210326","time":"17:05","loops":"0000000","
timeZone":"+08:00","bell":0}, the MCU will send the following command.

55 aa 03 65 00 53 0d 01 7b 22 64 61 74 65 22 3a 22 32 30 32 31 30 33 32 36 22 2c 22 74
69 6d 65 22 3a 22 31 37 3a 30 35 22 2c 22 6c 6f 6f 70 73 22 3a 22 30 30 30 30 30 30

30 22 2c 22 74 69 6d 65 5a 6f 6e 65 22 3a 22 2b 30 38 3a 30 30 22 2c 22 62 65 6c 6c 22
3a 30 7d 9e

The module returns the following command.

126 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x09

Data 1 Subcommand: 0x0D

1

0x01: Set an alarm.

0x02: Edit an alarm.

0x03: Delete an alarm.

0x04: Turn on an
alarm.

0x05: Turn off an
alarm.

1

0x00: Operation
succeeded.

0x01: JSON format
error occurs.

0x02: Parameter is
missing.

0x03: Failed to call
service.

0x04: Other errors.

6 timerId of an operation.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 09 0d 01 00 00 00 00 00 00 0a 85

127 / 177

5 Protocol list

Manage alarms in JSON format

Set an alarm

Name Type Description Optional

time String Set a time for an
alarm, such as
08:30.

N

loops String Repeat an alarm.
Sunday through
Saturday, specify
the day or days of
the week when the
alarm should recur.
1 means an alarm
recurs on that day
every week. For
example, 0100001
represents an
alarm that should
go off on Monday
and Saturday
every week.

N

date String Set a date for an
alarm. For a
recurring alarm,
this field defaults
to 00000000. To
schedule a
one-time alarm,
specify a date
when an alarm
should go off, such
as 20181126.

N

timeZone String The timezone,
such as +08:00.

N

128 / 177

5 Protocol list

Name Type Description Optional

bell Integer The alarm
ringtone,
represented by a
positive integer
and defaulting to
1. 0: online
ringtone. Other
values: local
ringtone.

Y

bellDesc String The ringtone
description, used
to match a song.

Y

• One-time alarm: { "date": "20181126", "time": "20:30", "loops": "0000000", "
timeZone": "+08:00", "bell":1 }

• Recurring alarm: { "date": "00000000", "time": "08:00", "loops": "0111110", "
timeZone": "+08:00", "bell":1 }

Edit an alarm

Name Type Description Optional

time String Set a time for an
alarm, such as
08:30.

N

129 / 177

5 Protocol list

Name Type Description Optional

loops String Repeat an alarm.
Sunday through
Saturday, specify
the day or days of
the week when the
alarm should recur.
1 means an alarm
recurs on that day
every week. For
example, 0100001
represents an
alarm that should
go off on Monday
and Saturday
every week.

N

date String Set a date for an
alarm. For a
recurring alarm,
this field defaults
to 00000000. To
schedule a
one-time alarm,
specify a date
when an alarm
should go off, such
as 20181126.

N

timerId Long Alarm ID N

timeZone String The timezone,
such as +08:00.

N

130 / 177

5 Protocol list

Name Type Description Optional

bell Integer The alarm
ringtone,
represented by a
positive integer
and defaulting to
1. 0: online
ringtone. Other
values: local
ringtone.

Y

bellDesc String The ringtone
description, used
to match a song.

Y

• One-time alarm: { "timerId": 10164075, "date": "20210322", "time": "14:30", "
loops": "0000000", "timeZone": "+08:00", "bell":1 }

• Recurring alarm: { "timerId": 10164075, "date": "20210322", "time": "14:30", "
loops": "0111110", "timeZone": "+08:00", "bell":1 }

Delete an alarm

Request parameters

Name Type Description Optional

timerId Long Alarm ID N

Sample request

{“timerId”: 1002}
Dismiss an alarm

Request parameters

131 / 177

5 Protocol list

Name Type Description Optional

timerId Long Alarm ID N

Sample request

{“timerId”: 1002}
Enable an alarm

Request parameters

Name Type Description Optional

timerId Long Alarm ID N

Sample request

{“timerId”: 1002}

5.34.6.14 Query the number of reminders The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x01

Data 1 Subcommand: 0x0E

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 65 00 01 0e 76

The module returns the following command.

132 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x02

Data 1 Subcommand: 0x0E

1 The number of
reminders: 0 to 30.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 0e 02 76

5.34.6.15 Send alarm data The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x65

Data length 2 0x0001+N

Data 1 Subcommand: 0x0F

N text: The texts or text
commands stored on the
device.

type:

tts indicates the text
the speaker reads out.

133 / 177

5 Protocol list

Field Bytes Description

music indicates the
custom ringtone to be
set.

target: alert indicates a
reminder. clock indicates
an alarm.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"text":"Play Beethoven","type":"music","target":"alert"},
the MCU will send the following command.

55 aa 03 65 00 41 0f 7b 22 74 65 78 74 22 3a 22 e6 92 ad e6 94 be e6 9e 97 e4 bf 8a e6
9d b0 e7 9a 84 e6 ad 8c 22 2c 22 74 79 70 65 22 3a 22 6d 75 73 69 63 22 2c 22 74 61

73 67 65 74 22 3a 22 61 6c 65 72 74 22 7d 91

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x65

Data length 2 0x0002

Data 1 Subcommand: 0x0F

1

0x00: Operation
succeeded.

0x01: JSON format
error occurs.

0x02: Parameter is
missing.

134 / 177

5 Protocol list

Field Bytes Description

0x03: Other errors.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 65 00 02 0f 00 75

5.35 Extended services

5.35.1 Enable time service notification

• This feature enables the module to notify the MCU of whether it has synced
time with the server after startup.

• The MCU sends a command to enable the required time service. The module
syncs time with the server after startup and then returns the time data the
MCU requests.

• If the time service has already been enabled, the module will reject the re-
peated enablement request unless it is restarted. In this case, the MCU should
use the common command of getting time data.

• When you use Get system time in GMT and Get local time, the module will
not immediately sync time with the server after it is connected to the server.
However, during this period, the MCU still keeps requesting time data. This
notification feature allows the MCU to wait for the message from the module
without keeping asking.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

135 / 177

5 Protocol list

Field Length Description

Data length 2 0x0002

Data 1 0x01 (sub-command)

1

0x00: GMT.

0x01: local time.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 02 01 01 3a

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x01 (sub-command)

1

0x00: The service is
enabled.

0x01: Failed to enable
the service.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

136 / 177

5 Protocol list

For example, 55 aa 00 34 00 02 01 00 36

5.35.2 Time service notification

• The module sends the time data according to the time service the MCU re-
quests.

• After the module is restarted, the time service is disabled. The MCU must send
the command to enable the time service notification.

The module sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0009

Data 1 0x02 (sub-command)

1

0x00: GMT.

0x01: local time.

7 The data length is 7
bytes.

Data[0]: indicates the
year. 0x00 represents the
year 2000.

Data[1]: indicates the
month, ranging from 1 to
12.

Data[2]: indicates the
day, ranging from 1 to 31.

Data[3]: indicates the
hour, ranging from 0 to
23.

137 / 177

5 Protocol list

Field Length Description

Data[4]: indicates the
minute, ranging from 0 to
59.

Data[5]: indicates the
second, ranging from 0 to
59.

Data[6]: indicates the
week, ranging from 1 to
7. 1 indicates Monday.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the local time is Monday at 18:35:28 on August 23, 2021, the module
sends the following command. 55 aa 00 34 00 09 02 01 15 08 17 12 23 1c 01 c5

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x02 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 01 02 39

138 / 177

5 Protocol list

5.35.3 (Optional) Enable reset status notification

A device can be reset with operations on the hardware or the mobile app. However,
the MCU will not be notified of related status. This feature will enable the module
to proactively send its status to the MCU.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x04 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 01 04 3b

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x04 (sub-command)

1

0x00: success.

0x01: failure.

139 / 177

5 Protocol list

Field Bytes Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 34 00 02 04 00 39

5.35.4 (Optional) The reset status

Reset status Description Status value

Status 1 Reset by hardware
operation

0x00

Status 2 Reset performed on the
mobile app

0x01

Status 3 Factory reset performed
on the mobile app

0x02

The module will resend the packet two times at a one second interval if it receives
no response.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x0002

Data 1 0x05 (sub-command)

1

140 / 177

5 Protocol list

Field Bytes Description

0x00: reset by
hardware operation.

0x01: reset performed
on the mobile app.

0x02: factory reset
performed on the mobile
app.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 34 00 02 05 00 3a

The MCU returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x0001

Data 1 0x05 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 01 05 3c

141 / 177

5 Protocol list

5.35.5 Get information about Wi-Fi module

• The running data of the Wi-Fi module is required for some products. This field
is used to get the required information.

• The MCU can send a specified code to the module to get the required informa-
tion. If the MCU requires multiple types of information, the codes must be sent
in order.

• If the MCU requires all the information available, it can use the code 0xff.

• This command only supports getting the SSID of an AP.

• If the SSID of an AP is the default smartlife, this command only returns smartlife
. The actual SSID is smartlife_xxxx. xxxx represents the last four digits of the
MAC address.

:::important

– The data format of this field is in JSON string and the data length varies
depending on the information type.

– The length of data that the MCU sends to the module must be at least
2 bytes, namely the sub-command plus a 1-byte data code. If the data
length is incorrect, the module will return a failure.

– The data codes have a one-to-one relationship with the information types.
Make sure you use the correct data code and do not use the reserved code.
:::

Name Encoding

All the information available 0xff

SSID of an AP 0x01

Country code 0x02

Serial number (SN) of the module 0x03

Frustration-Free Setup (FFS)
authorization history

0x04

…… ……

• For more information about the returned fields, see Appendix 4.

:::warn

142 / 177

5 Protocol list

– The common Wi-Fi modules do not support getting their SNs.
– If a module does not have FFS authorization history, the ffs field will return

0.
– If a module has FFS authorization history, the ffs field will return 1, coupled
with the SN value to assist in verification. :::

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x34

Data length 2 0x01+0x01+…N

Data 1 Sub-command: 0x07

Data(1)

0x01: the SSID of an
AP.

0x02: the country
code.

0x03: the SN of the
module.

0xFF: all the
information available.
This code is valid only
when it is set as the first
byte and enjoys the
highest priority. When
the module receives this
code, it will return all the
information available.

Data(2)

0x01: the SSID of an
AP.

143 / 177

5 Protocol list

Field Length Description

0x02: the country
code.

0x03: the SN of the
module.

Data(N)

0x01: the SSID of an
AP.

0x02: the country
code. 0x03: the SN of the
module.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 34 00 02 07 01 40

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x34

Data length 2 0x02+N

Data 1 0x07 (sub-command)

1

0x00: success.

0x01: failure. No
subsequent data will be
returned.

Data (N)

144 / 177

5 Protocol list

Field Bytes Description

ap

cc

sn

ffs

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, if the data is {"ap":"PlusStyle"}, the module returns the following com-
mand. 55 aa 00 34 00 14 07 00 7b 22 61 70 22 3a 22 50 6c 75 73 53 74 79 6c 65 22 7d 8
e

5.36 (Optional) Bluetooth features

5.36.1 Bluetooth functional test

• The module scans for the designated Bluetooth beacon ty_mdev and returns the
result and signal strength in percentage.

• To prevent quality defects, it is recommended that the distance between the
router and the device under test should be about 5 meters. If the signal
strength is greater than or equal to 60%, the device is acceptable. The specific
testing conditions depend on your production line and environment.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x35

Data length 2 0x0001

145 / 177

5 Protocol list

Field Length Description

Data 1 0x01 (sub-command)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 35 00 01 01 39

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x35

Data length 2 0x0003

Data 1 0x01 (sub-command)

2 The data length is 2
bytes.

Data[0]: 0x00 indicates
failure, and 0x01 indicates
success.

When Data[0] is 0x01,
Data[1] indicates the
signal strength, ranging
from 0 to 100, 0 for the
weakest and 100 for the
strongest.

146 / 177

5 Protocol list

Field Bytes Description

When Data[0] is 0x00, if
Data[1] is 0x00, it
indicates the module
does not find the
designated Bluetooth
beacon. If Data[1] is 0x01,
it indicates the module is
not flashed with the
license.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 35 00 03 01 01 14 4d

5.36.2 Report Bluetooth connection status

Bluetooth connection
status Description Status value

Status 1 Unbound and not
connected

0x00

Status 2 Unbound and connected 0x01

Status 3 Bound and not connected 0x02

Status 4 Bound and connected 0x03

Status 5 Unknown status 0x04

• The module enters status 1 and status 2 when pairing over Bluetooth.
• The LED activity in the module self-processing mode.

– Status 1: Blink quickly.
– Status 2 or Status 3: Steady off.

147 / 177

5 Protocol list

– Status 4: Steady on.
– Status 5: Blink slowly.

When themodule detects that the MCU is restarted or reconnected, it will proactively
send the current Bluetooth connection status to the MCU.

• When the Bluetooth connection status changes, the module will proactively
send the current status to the MCU.

• If you choose themodule self-processing mode, implementing this protocol
for your MCU is not necessary.

To enable reporting Bluetooth connection status, the MCU should enable Bit 0 in abv
field when it sends 0x3700 command to the module after power on.

The Bluetooth connection when power on defaults to unknown status.

The module sends the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x35

Data length 2 0x0002

Data Subcommand 0x04

1 Indicate the work status
of Bluetooth.

0x00: Status 1

0x01: Status 2

0x02: Status 3

0x03: Status 4

0x04: Status 5

0x05: Status 6

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

148 / 177

5 Protocol list

Example: 55 aa 00 35 00 02 04 03 3d

The MCU returns the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x35

Data length 2 0x0001

Data Subcommand 0x04

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example: 55 aa 00 35 00 01 04 39

5.36.3 Request Bluetooth connection status

Bluetooth connection
status Description Status value

Status 1 Unbound and not
connected

0x00

Status 2 Unbound and connected 0x01

Status 3 Bound and not connected 0x02

Status 4 Bound and connected 0x03

Status 5 Unknown status 0x04

The status definition must be consistent with that defined in Report Bluetooth
connection status.

The MCU sends the following data.

149 / 177

5 Protocol list

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x35

Data length 2 0x0001

Data Data 05

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example: 55 aa 03 35 00 01 05 3D

The module returns the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x35

Data length 2 0x0002

Data Subcommand 0x05

Data Indicate the work status
of Bluetooth.

0x00: Status 1

0x01: Status 2

0x02: Status 3

0x03: Status 4

0x04: Status 5

0x05: Status 6

150 / 177

5 Protocol list

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example: 55 aa 03 35 00 02 05 00 3E

5.36.4 Data notification for Bluetooth/Beacon remote control

:::info

• Bluetooth remote control service must be enabled to use this feature.
• The module enters pairing mode after the 0x02 command interaction. The pair-
ing mode is only active for 30 seconds.

• Up to five devices can be paired with the Bluetooth remote control. Otherwise,
pairing will fail. :::

The module sends the following data.

Field Length (byte) Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x35

Data length 2 0x0007

Data 1 Subcommand: 0x06

N

Data[0]: The category
ID (1 byte).

Data[1]: The control
command (1 byte).

Data[2] to Data[5]: The
command data (4 bytes)

151 / 177

5 Protocol list

Field Length (byte) Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example: 55 aa 03 35 00 02 05 00 3E

The MCU returns the following data.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x35

Data length 2 0x0001

Data 1 0x06 (subcommand)

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

Example: 55 aa 03 35 00 02 05 00 3E

Control commands

Command (1 byte)

Generic command (1 byte)

Command data (4 bytes) Padded with 0 if needed

Category ID

Generic: 0xFF Individual category Lighting product: 0x01 Socket/power strip: 0x02
Curtain switch: 0x03 Drying rack: 0x04 Fan: 0x05 Bathroom heater: 0x06 Air condi-
tioner: 0x07 Garage door opener: 0x08 Water valve: 0x09 Disinfector: 0x0A Ther-
mostat plug: 0x0B Dimmer switch: 0x0C Scene socket: 0x0D Switch: 0x0E Smart
curtain switch module: 0x0F

152 / 177

5 Protocol list

Send key values: 0x01

Byte 1: Button behavior (0 –Single press. 1 –Double press. 2 –Long press. 3 –Press
and hold. 4 –Press and release) Byte 2: The key value.
Switch: 0x04

Byte 1: 0 –Turn off. 1 –Turn on. 2 –Pause. Byte 2: The number of gangs. 0 represents
the main control.

Add favorites: 0x05

Byte 1: 1 –Favorite a state. 2 –Go to a specified favorite. Byte 2: The ID of a favorite,
ranging from 0 to 3.

Countdown timer: 0x06

Bytes 1 to 2: The countdown time, in seconds and big-endian format. 0 indicates
canceling the countdown timer. Byte 3: The action to run when the countdown timer
is done. (Reserved byte)

One-click group query: 0x07

The sub-device advertises the information about the added group.

Light on/off: 0x08

Byte 1: 0 –Turn off. 1 –Turn on. Byte 2: 0 –The main switch. 1 –White light switch.
2 –Colored light switch.
Brightness adjustment: 0x09

Byte 1: 0 –Brightness value. 1 –Brightness up. 2 –Brightness down. Byte 2: 0 –
Brightness of the current mode. 1 –Brightness of white light. Byte 3: When Byte 1
is 0, this byte indicates brightness percentage (1 to 100%). When Byte 1 is 1 or 2,
this byte indicates the step value of brightness (1 to 100%).

Stepless brightness adjustment: 0x0A

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte
2: 0 –Brightness of the current mode. 1 –Brightness of white light. Byte 3: Rate
(adjustment percentage per second) Byte 4: The target value.

Color temperature adjustment: 0x0B

Byte 1: 0 –Color temperature value. 1 –Color temperature up. 2 –Color temperature
down. Byte 2: When Byte 1 is 0, this byte indicates color temperature percentage
(1 to 100%). When Byte 1 is 1 or 2, this byte indicates the step value of color
temperature (1 to 100%).

153 / 177

5 Protocol list

Stepless color temperature adjustment: 0x0C

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Byte 3: The target value.

Color adjustment: 0x0D

Byte 1: 0 –Relative transition. 1 –The specified color. 2 –Start cycling adjustment. 3
–Stop cycling adjustment. Byte 2: The ID of the specified color when Byte 1 is 1.
Hue adjustment: 0x0E

Byte 1: 0 –Hue value. 1 –Hue up. 2 –Hue down. Byte 2: When Byte 1 is 0, this byte
indicates hue percentage (1 to 100%). When Byte 1 is 1 or 2, this byte indicates the
step value of hue (1 to 100%).

Stepless hue adjustment：0x0F
Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Byte 3: The target value.

Saturation adjustment: 0x10

Byte 1: 0 –Saturation value. 1 –Saturation up. 2 –Saturation down. Byte 2: When
Byte 1 is 0, this byte indicates saturation percentage (1 to 100%). When Byte 1 is
1 or 2, this byte indicates the step value of saturation (1 to 100%).

Stepless saturation adjustment: 0x11

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Byte 3: The target value.

Value adjustment: 0x12

Byte 1: 0 –Value. 1 –Value up. 2 –Value down. Byte 2: When Byte 1 is 0, this byte
indicates value percentage (1 to 100%). When Byte 1 is 1 or 2, this byte indicates
the step value of value (1 to 100%).

Stepless value adjustment: 0x13

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Byte 3: The target value.

HSV (hue, saturation, value) adjustment: 0x14

Byte 1: Hue percentage (0 to 100%) Byte 2: Saturation (0 to 100%) Byte 3: Value
percentage (0 to 100%)

Scene adjustment: 0x15

154 / 177

5 Protocol list

Byte 1: 0 –Relative transition. 1 –The specified scene. 2 –Start cycling adjustment.
3 –Stop cycling adjustment. Byte 2: The ID of the specified scene when Byte 1 is
1.

Lighting mode selection: 0x16

Byte 1: 1 –Night light mode.
Motor rotation adjustment: 0x20

Byte 1: 0 –Clockwise rotation. 1 –Counterclockwise rotation. 2 –Pause. Byte 2:
Travel percentage (0 to 100%). 0 –Continuous rotation. Byte 3: The number of
channels. 0 represents the total channel.

Motor travel setting : 0x21

Byte 1: 0 –The start position. 1 –The fine-tuning position. 2 –The end position. Byte
2: 0 –The up limit. 1 –The down limit. 2 –The intermediate limit. Byte 3: The number
of channels. 0 represents the total channel.

Movement speed adjustment: 0x22

Byte 1: 0 –Speed. 1 –Step increment. 2 –Step decrement. Byte 2: The specified
speed or step value of speed. Byte 3: The number of channels. 0 represents the
total channel.

Stepless movement speed adjustment: 0x23

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte
2: Rate (adjustment percentage per second) Byte 3: The target value. Byte 4: The
number of channels. 0 represents the total channel.

Temperature adjustment: 0x24

Byte 1: 0 –The temperature value. 1 –Temperature up. 2 –Temperature down. Bytes
2 to 3: When Byte 1 is 0, this byte indicates the specified temperature. When Byte 1
is 1 or 2, this byte indicates the step value of temperature. The 2-byte temperature
value is stored in big-endian. The most significant bit represents the sign (minus or
plus) and the rest of the bits represent the number. The number multiplied by 0.1°C
is the actual temperature.

Stepless temperature adjustment: 0x25

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Bytes 3 to 4: The target value of temper-
ature, which is calculated same as above.

Humidity adjustment: 0x26

155 / 177

5 Protocol list

Byte 1: 0 –Humidity value. 1 –Humidity up. 2 –Humidity down. Byte 2: The specified
humidity.

Stepless humidity adjustment: 0x27

Byte 1: 0 –Start incrementing. 1 –Start decrementing. 2 –Stop adjustment. Byte 2:
Rate (adjustment percentage per second) Byte 3: The target value.

Custom command

Custom category (1 byte)

Custom command (1 byte)

Parameter (3 bytes)

Lights: 0xFF

RGBY (red, green, blue, yellow) adjustment：0x01
Byte 1: 0 –Change color to red. 1 –Change color to green. 2 –Change color to blue.
3 –Change color to yellow.
Fan: 0xFE

Fan mode: 0x01

Byte 1: 0 –Manual adjustment. 1 –Natural wind. 2: Sleep wind.
Bathroom heater: 0xFD

Bathroom heater mode: 0x01

Byte 1: 0 –Heating. 1 –Ventilation. 2 –Drying. 3 –Fan.
Air conditioner: 0xFC

Sleep: 0x01

Byte 1: 0 –Off. 1 –On.

5.37 Report and send data of extended DPs

This feature only applies to voice services.

5.37.1 Enable the extended DP service

• This service extends the source of data sending to LAN, WAN, and Bluetooth.

156 / 177

5 Protocol list

• This service conflicts with Send commands.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x36

Data length 2 0x0002

Data 1 Subcommand: 0x01

1

0x00: disable the
extended DP service.

0x01: enable the
extended DP service.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 36 00 02 01 01 3c

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x36

Data length 2 0x0002

Data 1 Subcommand: 0x01

1

0x00: The service is
enabled or disabled.

157 / 177

5 Protocol list

Field Bytes Description

0x01: Failed to enable
or disable the service.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 36 00 02 01 00 38

5.37.2 Send commands of extended DPs

• For more information, seeData units.

• A command can contain data units of multiple DPs.

• The module sends control commands and the MCU reports DP status, which
occurs asynchronously.

• The source of extended DP data sendingmust be set manually, which conflicts
with the Send commands and Report status.

The module sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x36

Data length 2 Depends on the type and
number of data units
(N+2).

Data 1 Subcommand: 0x02

1 The source of data
sending:

158 / 177

5 Protocol list

Field Bytes Description

0x00: unknown
sources.

0x01: LAN.

0x02: WAN

0x03: scheduled tasks
in LAN.

0x04: scene linkage in
WAN.

0x05: reliable
channels.

0x06: Bluetooth.

0x07: scene linkage in
LAN.

0xF0: offline voice
modules.

N Data units

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, in LAN, if DP 3 of a boolean type is used for on/off control, and 1means
to turn on the device, the module will send the following command.

For example, 55 aa 00 36 0007 02 01 03 01 0001 01 45

5.37.3 Report status of extended DPs

• This feature only applies to offline voice modules.

• For more information, see Data unit.

• The MCU asynchronously reports DP status, which can be triggered by three
mechanisms.

159 / 177

5 Protocol list

• After the MCU executes the command of extended DPs from the module, it
reports the changed status of extended DPs to the module.

• When the MCU proactively detects status changes of DPs, it reports the
changed DP status to the module.

• When the MCU receives DP status queries, it sends the status of all DPs to the
module.

• The MCU can report data units of multiple DPs.

The MCU sends the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x36

Data length 2 Depends on the type and
number of data units
(N+3).

Data 1 Subcommand: 0x03

1

0x00: The MCU
proactively reports
status.

0x01: The MCU
responds to status
queries.

0x02: The MCU
responds to commands of
extended DPs.

160 / 177

5 Protocol list

Field Bytes Description

1 When the MCU
proactively reports DP
status or responds to
status queries, it
responds to the data
source requested by
Send commands of
extended DPs with 0x00.

0x00: unknown
sources.

0x01: LAN.

0x02: WAN

0x03: scheduled tasks
in LAN.

0x04: scene linkage in
WAN.

0x05: reliable
channels.

0x06: Bluetooth.

0x07: scene linkage in
LAN.

0xF0: offline voice
modules.

N Data units

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, in WAN, if the DP 5 of value type indicates the current humidity of
30%, the MCU sends the following command to the module.

161 / 177

5 Protocol list

For example, 55 aa 03 36 000b 03 02 02 05 02 0004 0000001e 73

5.38 (Optional) Smart fan features

This section only applies to specific fan categories.

5.38.1 Fan functional test

For example, a fan with a step of 20 and a hold-time of five seconds. The module
can adjust the motor to 0%, 20%, 40%, 60%, 80%, and 100% in sequence at an
interval of five seconds.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x72

Data length 2 0x03

Data 1 0x01 (sub-command)

1 0x0a: step of fan speed,
ranging from 1 to 99.

1 0x05: the speed level
hold-time, ranging from 1
to 100 seconds.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 72 00 03 01 0a 05 87

The module returns the following command.

162 / 177

5 Protocol list

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x72

Data length 2 0x02

Data 1 0x01 (sub-command)

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 72 00 02 01 00 74

5.38.2 Set duty cycle

If the duty cycle is set to 70%, PWM1 outputs 70%, and PWM2 outputs 0%. If zero-
crossing is detected, PWM1 outputs 0% and PWM2 outputs 70%.

The MCU sends the following command.

Field Length Description

Header 2 0x55aa

Version 1 0x03

Command 1 0x72

Data length 2 0x02

Data 1 0x02 (sub-command)

1 0x0a: ranging from 0% to
100%.

163 / 177

5 Protocol list

Field Length Description

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 03 72 00 02 02 0a 82

The module returns the following command.

Field Bytes Description

Header 2 0x55aa

Version 1 0x00

Command 1 0x72

Data length 2 0x02

Data 1 0x02 (sub-command)

1

0x00: success.

0x01: failure.

Checksum 1 Start from the header,
add up all the bytes, and
then divide the sum by
256 to get the remainder.

For example, 55 aa 00 72 00 02 02 00 75

164 / 177

6 Appendix

6 Appendix

This appendix only provides the defined contents. Do not use any undefined con-
tent.

6.1 Appendix 1: Module information

Name Description Options Obtain Set

cc Country code 0: applies to
Chinese
mainland,
Korea,
Singapore,
Australia,
Japan (1-13),
and others.

Supported Not supported

1: applies to
the United
States, Taiwan
(China), and
Canada.

2: applies to
Japan (1-14)

3: applies to
Europe

ap Access point
(AP)

String Supported Not supported

sn Serial number
(SN) of the
module

The SN written
to the module.

Not supported Not supported

165 / 177

6 Appendix

Name Description Options Obtain Set

ffs Indicates
whether a
module has
FFS
authorization
information.

0: A module
does not have
FFS
authorization
information.

Supported Not supported

1: A module
has FFS
authorization
information.

6.2 Appendix 2: File download exceptions

Description Status value

Device is shut down. 0x00

File transfer times out. 0x01

Battery level is low. 0x02

Device is overheating. 0x03

File is large. 0x04

Memory is not enough. 0x05

Operation anomaly occurs. 0x06

For example, out of paper, paper jam,
and cover open.

6.3 Appendix 3: File transfer status

Status Description Status value

Status 1 No file transfer task. 0x00

Status 2 File transfer is starting. 0x01

166 / 177

6 Appendix

Status Description Status value

Status 3 File transfer is in
progress.

0x02

Status 4 File transfer/download is
completed.

0x03

Status 5 File upload to the server
succeeded.

0x04

Status 6 File transfer with the MCU
times out.

0x05

Status 7 Failed to get the URL for
file upload.

0x06

Status 8 Failed to upload the file to
the server.

0x07

Status 9 Failed to get the file from
the server.

0x08

Status 10 The MCU fails to respond
to file transfer.

0x09

6.4 Appendix 4: OTA MCU firmware update

Status Description Status value

Status 1 Start update. 0x00

Status 2 Update is in progress. 0x01

Status 3 Update is completed. 0x02

Status 4 Update failed. 0x03

6.5 Appendix 5: File type

167 / 177

6 Appendix

Description Value

TXT 1

DOC 2

PDF 3

EXCEL 4

PNG 5

JPG 6

BMP 7

TIF 8

GIF 9

PCX 10

TGA 11

Exif 12

FPX 13

SVG 14

PSD 15

CDR 16

PCD 17

DXF 18

UFO 19

EPS 20

AI 21

Raw 22

WMF 23

WebP 24

AVIF 25

WAV 26

FLAC 27

168 / 177

6 Appendix

Description Value

APE 28

ALAC 29

WavPack (WV) 30

MP3 31

AAC 32

Ogg Vorbis 33

Opus 34

MP4 35

169 / 177

7 Version history

7 Version history

Version Description Date Note

1.2.5 Modified June 16, 2022 1. Added file
download feature.

2. Added the
protocol for
Bluetooth/Beacon
remote control.

3. Added the
protocol for
Bluetooth
connection status
notification.

1.2.4 Modified July 1, 2021 1. Added support
for multiple types
of MCU firmware.

2. Added RF
protocols.

3. Added support
for getting Wi-Fi
module
information.

4. Added IR status
indicator.

5. Updated voice
module feature
extension.

6. Added features
of Bluetooth
remote controls.

7. Added features
of fans.

170 / 177

7 Version history

Version Description Date Note

1.2.3 Modified May 21, 2020 1. Added fields of
IR feature and
low-power mode
enablement in the
production info
packet.

2. Added
commands of
proactively
weather service
requests.

3. Added
command of
notification of
module reset.

4. Modified the
description of
module working
mode.

1.2.2 Modified April 11, 2020 Add features of
voice module
VWXR2, including
play/pause,
Bluetooth on/off,
local alarm, and
group control.

1.2.1 Modified April 9, 2020 1. Added Wi-Fi
functional test.

2. Added Wi-Fi
remote control
feature.

171 / 177

7 Version history

Version Description Date Note

1.2.0 Modified March 31, 2020 Added features to
adapt to CI
baseline. Added
fields of network
status and
production
information.

1.1.9 Modified March 26, 2020 1. Updated voice
service protocols.

2. Add extension
features for
modules.

3. Added
production test for
Wi-Fi and
Bluetooth LE
combo module.

1.1.8 Modified February 18, 2020 1. Added volume
setting for voice
module VWXR2.

2. Added
production test for
audio and
wake-up.

1.1.7 Modified November 19,
2019

1. Added map
data streaming for
multiple maps.

2. Added channels
for third-party file
download.

3. Updated
protocol
description.

172 / 177

7 Version history

Version Description Date Note

1.1.6 Modified August 28, 2019 Added IR features.

1.1.5 Modified August 24, 2019 1. Added interface
to get the MAC
address of the
module.

2. Updated
description of
requesting
weather data.

1.1.4 Modified June 17, 2019 1. Added
performance test
for Wi-Fi
connection modes.

2. Updated
streaming service.

1.1.3 Modified April 15, 2019 1. Updated the
description of
commands.

2. Added features
of robot vacuum.

1.1.2 Modified December 17,
2018

1. Added pairing
via serial port.

2. Added
commands for the
MCU to get the
Wi-Fi network
status.

173 / 177

7 Version history

Version Description Date Note

1.1.1 Modified August 10, 2018 Updated the
returns from the
MCU to respond to
the firmware
update. (legacy
version is
compatible)

1.1.0 Modified March 29, 2018 Added the feature
of turning off
heartbeats.

1.0.9 Modified January 19, 2018 1. Added
synchronous
reporting, enabling
the module to
return the report
result on each
data reporting
task.

2. Added the
feature to getting
Wi-Fi signal
strength, in dB.

1.0.8 Modified May 12, 2017 1. Added the
interface to enable
weather service.

2. Added the
interface to send
the weather data
to the MCU.

3. Modified the
heartbeat interval
to 15 seconds.

174 / 177

7 Version history

Version Description Date Note

1.0.7 Modified February 16, 2017 1. Added pairing
mode setting, with
an extended
interface for
product
information query.

2. Updated the
command to query
MCU version
number to 0x03.

1.0.6 Modified November 10,
2016

1. Added Wi-Fi
working status.

2. Updated the
command to query
MCU version
number to 0x02.

1.0.5 Modified June 7, 2016 1. Deleted update
query command.

2. Delete the
command used to
notify the MCU to
enter test mode.

3. Modified the
protocol of starting
firmware update,
support for files
over 64 KB in size.

1.0.4 Modified May 12, 2016 1. Added the
command to get
the local time.

2. Added Wi-Fi
functional test.

175 / 177

7 Version history

Version Description Date Note

3. Added the
command to get
the module
memory.

1.0.3 Modified November 14,
2015

1. Added the
command for the
MCU to get the
time data.

2. Added the
command for the
MCU to get the
time zone.

3. Added the
feature to enter
test mode.

1.0.2 Modified October 17, 2015 1. Added the
feature of MCU
restart detection in
the heartbeat
mechanism.

2. Modified the
interval of
heartbeat
detection to 10
seconds.

3. Modified the
proactive Wi-Fi
status reporting to
sending Wi-Fi
status to the MCU.

176 / 177

7 Version history

Version Description Date Note

1.0.1 Modified October 13, 2015 1. Modified
product ID query
to module
information query.

2. Added returning
version number.

1.0.0 Create October 10, 2015 The first release.

177 / 177

	Serial communication
	Frame format
	Serial buffer size of module
	Data units
	Protocol list
	Send heartbeats
	Query product information
	Query working mode
	(Optional) Notification of new feature setting
	Report network status
	Reset Wi-Fi connection
	Reset Wi-Fi and select pairing mode
	Send commands
	Report status (async)
	Report status (sync)
	Report status (record-type)
	Query DP status
	Update MCU firmware
	Get system time in GMT
	Get local time
	Test Wi-Fi functionality (scanning)
	Get module’s memory
	(Optional) Enable weather services
	(Optional) Send weather data
	Proactively request weather data
	(Optional) Get Wi-Fi signal strength
	(Optional) Disable heartbeats
	(Optional) Pairing via serial port
	Get Wi-Fi status
	(Optional) Map streaming for robot vacuum
	(Optional) Map data streaming for multiple maps
	(Optional) Get the map session ID
	Test Wi-Fi functionality (connection)
	Get module’s MAC address
	(Optional) IR status notification
	(Optional) IR functionality test
	(Optional) RF functionality
	(Optional) File transfer service
	(Optional) Voice features
	Extended services
	(Optional) Bluetooth features
	Report and send data of extended DPs
	(Optional) Smart fan features

	Appendix
	Appendix 1: Module information
	Appendix 2: File download exceptions
	Appendix 3: File transfer status
	Appendix 4: OTA MCU firmware update
	Appendix 5: File type

	Version history

