/** * @file * The main code of the zh_onewire component. */ #include "zh_onewire.h" /// \cond #define MASTER_RESET_PULSE_DURATION 480 // Reset time high. Reset time low. #define RESPONSE_MAX_DURATION 60 // Presence detect high. #define PRESENCE_PULSE_MAX_DURATION 240 // Presence detect low. #define RECOVERY_DURATION 1 // Bus recovery time. #define TIME_SLOT_START_DURATION 1 // Time slot start. #define TIME_SLOT_DURATION 120 // Time slot. #define VALID_DATA_DURATION 15 // Valid data duration. #define SKIP_ROM 0xCC #define MATCH_ROM 0x55 #define READ_ROM 0x33 #define SEARCH_ROM 0xF0 #define pgm_read_byte(addr) (*(const uint8_t *)(addr)) /// \endcond static uint8_t _read_bit(void); static void _send_bit(const uint8_t bit); /// \cond #ifdef CONFIG_IDF_TARGET_ESP8266 #define esp_delay_us(x) os_delay_us(x) #else #define esp_delay_us(x) esp_rom_delay_us(x) #endif /// \endcond static const char *TAG = "zh_onewire"; static uint8_t _pin; static uint8_t _rom[8]; static uint8_t _rom_fork_bit = 0xFF; static const uint8_t _rom_crc_table[] = { 0x00, 0x5e, 0xbc, 0xe2, 0x61, 0x3f, 0xdd, 0x83, 0xc2, 0x9c, 0x7e, 0x20, 0xa3, 0xfd, 0x1f, 0x41, 0x9d, 0xc3, 0x21, 0x7f, 0xfc, 0xa2, 0x40, 0x1e, 0x5f, 0x01, 0xe3, 0xbd, 0x3e, 0x60, 0x82, 0xdc, 0x23, 0x7d, 0x9f, 0xc1, 0x42, 0x1c, 0xfe, 0xa0, 0xe1, 0xbf, 0x5d, 0x03, 0x80, 0xde, 0x3c, 0x62, 0xbe, 0xe0, 0x02, 0x5c, 0xdf, 0x81, 0x63, 0x3d, 0x7c, 0x22, 0xc0, 0x9e, 0x1d, 0x43, 0xa1, 0xff, 0x46, 0x18, 0xfa, 0xa4, 0x27, 0x79, 0x9b, 0xc5, 0x84, 0xda, 0x38, 0x66, 0xe5, 0xbb, 0x59, 0x07, 0xdb, 0x85, 0x67, 0x39, 0xba, 0xe4, 0x06, 0x58, 0x19, 0x47, 0xa5, 0xfb, 0x78, 0x26, 0xc4, 0x9a, 0x65, 0x3b, 0xd9, 0x87, 0x04, 0x5a, 0xb8, 0xe6, 0xa7, 0xf9, 0x1b, 0x45, 0xc6, 0x98, 0x7a, 0x24, 0xf8, 0xa6, 0x44, 0x1a, 0x99, 0xc7, 0x25, 0x7b, 0x3a, 0x64, 0x86, 0xd8, 0x5b, 0x05, 0xe7, 0xb9, 0x8c, 0xd2, 0x30, 0x6e, 0xed, 0xb3, 0x51, 0x0f, 0x4e, 0x10, 0xf2, 0xac, 0x2f, 0x71, 0x93, 0xcd, 0x11, 0x4f, 0xad, 0xf3, 0x70, 0x2e, 0xcc, 0x92, 0xd3, 0x8d, 0x6f, 0x31, 0xb2, 0xec, 0x0e, 0x50, 0xaf, 0xf1, 0x13, 0x4d, 0xce, 0x90, 0x72, 0x2c, 0x6d, 0x33, 0xd1, 0x8f, 0x0c, 0x52, 0xb0, 0xee, 0x32, 0x6c, 0x8e, 0xd0, 0x53, 0x0d, 0xef, 0xb1, 0xf0, 0xae, 0x4c, 0x12, 0x91, 0xcf, 0x2d, 0x73, 0xca, 0x94, 0x76, 0x28, 0xab, 0xf5, 0x17, 0x49, 0x08, 0x56, 0xb4, 0xea, 0x69, 0x37, 0xd5, 0x8b, 0x57, 0x09, 0xeb, 0xb5, 0x36, 0x68, 0x8a, 0xd4, 0x95, 0xcb, 0x29, 0x77, 0xf4, 0xaa, 0x48, 0x16, 0xe9, 0xb7, 0x55, 0x0b, 0x88, 0xd6, 0x34, 0x6a, 0x2b, 0x75, 0x97, 0xc9, 0x4a, 0x14, 0xf6, 0xa8, 0x74, 0x2a, 0xc8, 0x96, 0x15, 0x4b, 0xa9, 0xf7, 0xb6, 0xe8, 0x0a, 0x54, 0xd7, 0x89, 0x6b, 0x35}; esp_err_t zh_onewire_init(const uint8_t pin) { ESP_LOGI(TAG, "Onewire initialization begin."); _pin = pin; gpio_config_t config; config.intr_type = GPIO_INTR_DISABLE; config.mode = GPIO_MODE_INPUT; config.pin_bit_mask = (1ULL << _pin); config.pull_down_en = GPIO_PULLDOWN_DISABLE; config.pull_up_en = GPIO_PULLUP_ENABLE; if (gpio_config(&config) != ESP_OK) { ESP_LOGE(TAG, "Onewire initialization fail. Incorrect GPIO number."); return ESP_ERR_INVALID_ARG; } ESP_LOGI(TAG, "Onewire initialization success."); return ESP_OK; } esp_err_t zh_onewire_reset(void) { ESP_LOGI(TAG, "Onewire reset begin."); if (gpio_get_level(_pin) != 1) { ESP_LOGE(TAG, "Onewire reset fail. Bus is busy."); return ESP_ERR_INVALID_RESPONSE; } gpio_set_direction(_pin, GPIO_MODE_OUTPUT); gpio_set_level(_pin, 0); esp_delay_us(MASTER_RESET_PULSE_DURATION); gpio_set_level(_pin, 1); gpio_set_direction(_pin, GPIO_MODE_INPUT); esp_delay_us(RECOVERY_DURATION); uint8_t response_time = 0; while (gpio_get_level(_pin) == 1) { if (response_time > RESPONSE_MAX_DURATION) { ESP_LOGE(TAG, "Onewire reset fail. Timeout exceeded."); return ESP_ERR_TIMEOUT; } ++response_time; esp_delay_us(1); } uint8_t presence_time = 0; while (gpio_get_level(_pin) == 0) { if (presence_time > PRESENCE_PULSE_MAX_DURATION) { ESP_LOGE(TAG, "Onewire reset fail. Timeout exceeded."); return ESP_ERR_TIMEOUT; } ++presence_time; esp_delay_us(1); } esp_delay_us(MASTER_RESET_PULSE_DURATION - response_time - presence_time); ESP_LOGI(TAG, "Onewire reset success."); return ESP_OK; } void zh_onewire_send_byte(uint8_t byte) { for (uint8_t i = 0; i < 8; ++i) { _send_bit(byte & 1); byte >>= 1; } } esp_err_t zh_onewire_skip_rom(void) { ESP_LOGI(TAG, "Onewire skip ROM begin."); if (zh_onewire_reset() != ESP_OK) { ESP_LOGE(TAG, "Onewire skip ROM fail."); return ESP_FAIL; } zh_onewire_send_byte(SKIP_ROM); ESP_LOGI(TAG, "Onewire skip ROM success."); return ESP_OK; } esp_err_t zh_onewire_read_rom(uint8_t *buf) { ESP_LOGI(TAG, "Onewire read ROM begin."); if (zh_onewire_reset() != ESP_OK) { ESP_LOGE(TAG, "Onewire read ROM fail."); return ESP_FAIL; } zh_onewire_send_byte(READ_ROM); uint8_t crc = 0; for (uint8_t i = 0; i < 8; ++i) { *buf = zh_onewire_read_byte(); crc = pgm_read_byte(&_rom_crc_table[crc ^ *buf]); ++buf; } if (crc != 0) { ESP_LOGE(TAG, "Onewire read ROM fail. Invalid CRC."); return ESP_ERR_INVALID_CRC; } ESP_LOGI(TAG, "Onewire read ROM success."); return ESP_OK; } esp_err_t zh_onewire_match_rom(const uint8_t *data) { ESP_LOGI(TAG, "Onewire match ROM begin."); if (zh_onewire_reset() != ESP_OK) { ESP_LOGE(TAG, "Onewire match ROM fail."); return ESP_FAIL; } zh_onewire_send_byte(MATCH_ROM); for (uint8_t i = 0; i < 8; ++i) { zh_onewire_send_byte(*(data++)); } ESP_LOGI(TAG, "Onewire match ROM success."); return ESP_OK; } esp_err_t zh_onewire_search_rom_init(void) { for (uint8_t i = 0; i < 8; ++i) { _rom[i] = 0; } _rom_fork_bit = 65; return ESP_OK; } uint8_t *zh_onewire_search_rom_next(void) { ESP_LOGI(TAG, "Onewire search ROM begin."); if (_rom_fork_bit == 0xFF) { ESP_LOGE(TAG, "Onewire search ROM not initialized."); return NULL; } if (_rom_fork_bit == 0) { ESP_LOGI(TAG, "Onewire search ROM terminated."); return NULL; } if (zh_onewire_reset() != ESP_OK) { ESP_LOGE(TAG, "Onewire search ROM fail."); return NULL; } uint8_t bit_position = 8; uint8_t *p_prev_bit = &_rom[0]; uint8_t prev_bit = *p_prev_bit; uint8_t next_bit = 0; uint8_t counter = 1; zh_onewire_send_byte(SEARCH_ROM); uint8_t new_fork = 0; for (;;) { uint8_t bit_not_0 = _read_bit(); uint8_t bit_not_1 = _read_bit(); if (bit_not_0 == 0) { if (bit_not_1 == 0) { if (counter < _rom_fork_bit) { if (prev_bit == 1) { next_bit |= 0x80; } else { new_fork = counter; } } else if (counter == _rom_fork_bit) { next_bit |= 0x80; } else { new_fork = counter; } } } else { if (bit_not_1 == 0) { next_bit |= 0x80; } else { ESP_LOGI(TAG, "Onewire search ROM terminated."); return NULL; } } _send_bit(next_bit & 0x80); --bit_position; if (bit_position == 0) { *p_prev_bit = next_bit; if (counter >= 64) { break; } next_bit = 0; ++p_prev_bit; prev_bit = *p_prev_bit; bit_position = 8; } else { if (counter >= 64) { break; } prev_bit >>= 1; next_bit >>= 1; } ++counter; } _rom_fork_bit = new_fork; ESP_LOGI(TAG, "Onewire search ROM success."); return &_rom[0]; } uint8_t zh_onewire_read_byte(void) { uint8_t byte = 0; for (uint8_t i = 0; i < 8; ++i) { byte >>= 1; if (_read_bit() != 0) { byte |= 0x80; } } return byte; } static uint8_t _read_bit(void) { gpio_set_direction(_pin, GPIO_MODE_OUTPUT); gpio_set_level(_pin, 0); esp_delay_us(TIME_SLOT_START_DURATION); gpio_set_level(_pin, 1); gpio_set_direction(_pin, GPIO_MODE_INPUT); esp_delay_us(VALID_DATA_DURATION - TIME_SLOT_START_DURATION); uint8_t bit = gpio_get_level(_pin); esp_delay_us(TIME_SLOT_DURATION - RECOVERY_DURATION - VALID_DATA_DURATION); return bit; } static void _send_bit(const uint8_t bit) { gpio_set_direction(_pin, GPIO_MODE_OUTPUT); gpio_set_level(_pin, 0); if (bit == 0) { esp_delay_us(TIME_SLOT_DURATION); gpio_set_level(_pin, 1); gpio_set_direction(_pin, GPIO_MODE_INPUT); esp_delay_us(RECOVERY_DURATION); } else { esp_delay_us(TIME_SLOT_START_DURATION); gpio_set_level(_pin, 1); gpio_set_direction(_pin, GPIO_MODE_INPUT); esp_delay_us(TIME_SLOT_DURATION); } }