This commit is contained in:
2025-06-14 10:40:16 +03:00
parent db0e997aad
commit f4ec446606
2 changed files with 78 additions and 562 deletions

View File

@@ -9,7 +9,7 @@
#define ZH_ENCODER_INIT_CONFIG_DEFAULT() \
{ \
.task_priority = 10, \
.stack_size = 2048, \
.stack_size = 3072, \
.queue_size = 10, \
.a_gpio_number = 0, \
.b_gpio_number = 0, \
@@ -23,43 +23,16 @@ extern "C"
{
#endif
typedef int32_t rotary_encoder_position_t;
// /**
// * @brief Enum representing the direction of rotation.
// */
typedef enum
{
ROTARY_ENCODER_DIRECTION_NOT_SET = 0, ///< Direction not yet known (stationary since reset)
ROTARY_ENCODER_DIRECTION_CLOCKWISE,
ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE,
} rotary_encoder_direction_t;
// // Used internally
// ///@cond INTERNAL
#define TABLE_COLS 4
typedef uint8_t table_row_t[TABLE_COLS];
// ///@endcond
// /**
// * @brief Struct represents the current state of the device in terms of incremental position and direction of last movement
// */
typedef struct
{
rotary_encoder_position_t position; ///< Numerical position since reset. This value increments on clockwise rotation, and decrements on counter-clockewise rotation. Counts full or half steps depending on mode. Set to zero on reset.
rotary_encoder_direction_t direction; ///< Direction of last movement. Set to NOT_SET on reset.
} rotary_encoder_state_t;
typedef struct // Structure for initial initialization of encoder.
{
uint8_t task_priority; // Task priority for the encoder isr processing. @note It is not recommended to set a value less than 10.
uint16_t stack_size; // Stack size for task for the encoder isr processing processing. @note The minimum size is 2048 bytes.
uint16_t stack_size; // Stack size for task for the encoder isr processing processing. @note The minimum size is 3072 bytes.
uint8_t queue_size; // Queue size for task for the encoder processing. @note It is not recommended to set a value less than 10.
uint8_t a_gpio_number; // Encoder A GPIO number.
uint8_t b_gpio_number; // Encoder B GPIO number.
int32_t encoder_min_value; // Encoder min value. @note Must be less than encoder_max_value.
int32_t encoder_max_value; // Encoder max value. @note Must be greater than encoder_min_value.
float encoder_step; // Encoder step. @note Must be greater than 0.
double encoder_step; // Encoder step. @note Must be greater than 0.
uint8_t encoder_number; // Unique encoder number.
} zh_encoder_init_config_t;
@@ -69,14 +42,11 @@ extern "C"
uint8_t b_gpio_number; // Encoder B GPIO number.
int32_t encoder_min_value; // Encoder min value. @note Must be less than encoder_max_value.
int32_t encoder_max_value; // Encoder max value. @note Must be greater than encoder_min_value.
float encoder_step; // Encoder step. @note Must be greater than 0.
float encoder_position; // Encoder position.
double encoder_step; // Encoder step. @note Must be greater than 0.
double encoder_position; // Encoder position.
uint8_t encoder_number; // Encoder unique number.
uint8_t encoder_state; // Encoder internal state.
bool is_initialized; // Encoder initialization flag.
const table_row_t *table; ///< Pointer to active state transition table
uint8_t table_state; ///< Internal state
volatile rotary_encoder_state_t state; ///< Device state
} zh_encoder_handle_t;
ESP_EVENT_DECLARE_BASE(ZH_ENCODER);
@@ -84,7 +54,7 @@ extern "C"
typedef struct // Structure for sending data to the event handler when cause an interrupt. @note Should be used with ZH_ENCODER event base.
{
uint8_t encoder_number; // Encoder unique number.
float encoder_position; // Encoder current position.
double encoder_position; // Encoder current position.
} zh_encoder_event_on_isr_t;
/**
@@ -95,7 +65,7 @@ extern "C"
* @param[in] config Pointer to encoder initialized configuration structure. Can point to a temporary variable.
* @param[out] handle Pointer to unique encoder handle.
*
* @note Before initialize the expander recommend initialize zh_encoder_init_config_t structure with default values.
* @note Before initialize the encoder recommend initialize zh_encoder_init_config_t structure with default values.
*
* @code zh_encoder_init_config_t config = ZH_ENCODER_INIT_CONFIG_DEFAULT() @endcode
*
@@ -111,7 +81,7 @@ extern "C"
*
* @return ESP_OK if success or an error code otherwise.
*/
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, float position);
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, double position);
/**
* @brief Reset encoder position.
@@ -127,138 +97,3 @@ extern "C"
#ifdef __cplusplus
}
#endif
// #ifndef ROTARY_ENCODER_H
// #define ROTARY_ENCODER_H
// #include <stdbool.h>
// #include <stdint.h>
// #include "freertos/FreeRTOS.h"
// #include "freertos/queue.h"
// #include "esp_err.h"
// #include "driver/gpio.h"
// #ifdef __cplusplus
// extern "C" {
// #endif
// typedef int32_t rotary_encoder_position_t;
// // /**
// // * @brief Enum representing the direction of rotation.
// // */
// typedef enum
// {
// ROTARY_ENCODER_DIRECTION_NOT_SET = 0, ///< Direction not yet known (stationary since reset)
// ROTARY_ENCODER_DIRECTION_CLOCKWISE,
// ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE,
// } rotary_encoder_direction_t;
// // // Used internally
// // ///@cond INTERNAL
// #define TABLE_COLS 4
// typedef uint8_t table_row_t[TABLE_COLS];
// // ///@endcond
// // /**
// // * @brief Struct represents the current state of the device in terms of incremental position and direction of last movement
// // */
// typedef struct
// {
// rotary_encoder_position_t position; ///< Numerical position since reset. This value increments on clockwise rotation, and decrements on counter-clockewise rotation. Counts full or half steps depending on mode. Set to zero on reset.
// rotary_encoder_direction_t direction; ///< Direction of last movement. Set to NOT_SET on reset.
// } rotary_encoder_state_t;
// /**
// * @brief Struct carries all the information needed by this driver to manage the rotary encoder device.
// * The fields of this structure should not be accessed directly.
// */
// typedef struct
// {
// gpio_num_t pin_a; ///< GPIO for Signal A from the rotary encoder device
// gpio_num_t pin_b; ///< GPIO for Signal B from the rotary encoder device
// QueueHandle_t queue; ///< Handle for event queue, created by ::rotary_encoder_create_queue
// const table_row_t * table; ///< Pointer to active state transition table
// uint8_t table_state; ///< Internal state
// volatile rotary_encoder_state_t state; ///< Device state
// } rotary_encoder_info_t;
// /**
// * @brief Struct represents a queued event, used to communicate current position to a waiting task
// */
// typedef struct
// {
// rotary_encoder_state_t state; ///< The device state corresponding to this event
// } rotary_encoder_event_t;
// /**
// * @brief Initialise the rotary encoder device with the specified GPIO pins and full step increments.
// * This function will set up the GPIOs as needed,
// * Note: this function assumes that gpio_install_isr_service(0) has already been called.
// * @param[in, out] info Pointer to allocated rotary encoder info structure.
// * @param[in] pin_a GPIO number for rotary encoder output A.
// * @param[in] pin_b GPIO number for rotary encoder output B.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_init(rotary_encoder_info_t * info, gpio_num_t pin_a, gpio_num_t pin_b);
// /**
// * @brief Enable half-stepping mode. This generates twice as many counted steps per rotation.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @param[in] enable If true, count half steps. If false, only count full steps.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t * info, bool enable);
// /**
// * @brief Reverse (flip) the sense of the direction.
// * Use this if clockwise/counterclockwise are not what you expect.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t * info);
// /**
// * @brief Remove the interrupt handlers installed by ::rotary_encoder_init.
// * Note: GPIOs will be left in the state they were configured by ::rotary_encoder_init.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_uninit(rotary_encoder_info_t * info);
// /**
// * @brief Create a queue handle suitable for use as an event queue.
// * @return A handle to a new queue suitable for use as an event queue.
// */
// QueueHandle_t rotary_encoder_create_queue(void);
// /**
// * @brief Set the driver to use the specified queue as an event queue.
// * It is recommended that a queue constructed by ::rotary_encoder_create_queue is used.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @param[in] queue Handle to queue suitable for use as an event queue. See ::rotary_encoder_create_queue.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t * info, QueueHandle_t queue);
// /**
// * @brief Get the current position of the rotary encoder.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @param[in, out] state Pointer to an allocated rotary_encoder_state_t struct that will
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t * info, rotary_encoder_state_t * state);
// /**
// * @brief Reset the current position of the rotary encoder to zero.
// * @param[in] info Pointer to initialised rotary encoder info structure.
// * @return ESP_OK if successful, ESP_FAIL or ESP_ERR_* if an error occurred.
// */
// esp_err_t rotary_encoder_reset(rotary_encoder_info_t * info);
// #ifdef __cplusplus
// }
// #endif
// #endif // ROTARY_ENCODER_H

View File

@@ -14,12 +14,8 @@
return err; \
}
#define TABLE_ROWS 7
#define TABLE_COLS 4
#define DIR_NONE 0x0 // No complete step yet.
#define DIR_CW 0x10 // Clockwise step.
#define DIR_CCW 0x20 // Anti-clockwise step.
#define ZH_ENCODER_DIRECTION_CW 0x10
#define ZH_ENCODER_DIRECTION_CCW 0x20
// Create the half-step state table (emits a code at 00 and 11)
#define R_START 0x0
@@ -29,7 +25,7 @@
#define H_CW_BEGIN_M 0x4
#define H_CCW_BEGIN_M 0x5
static const uint8_t _encoder_matrix[TABLE_ROWS][TABLE_COLS] = {
static const uint8_t _encoder_matrix[7][4] = {
// 00 01 10 11 // BA
{H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
{H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
@@ -42,54 +38,6 @@ static const uint8_t _encoder_matrix[TABLE_ROWS][TABLE_COLS] = {
static QueueHandle_t _queue_handle = NULL;
static bool _is_initialized = false;
// #define ROTARY_ENCODER_DEBUG
// Use a single-item queue so that the last value can be easily overwritten by the interrupt handler
// #define EVENT_QUEUE_LENGTH 10
// #define TABLE_ROWS 7
// #define DIR_NONE 0x0 // No complete step yet.
// #define DIR_CW 0x10 // Clockwise step.
// #define DIR_CCW 0x20 // Anti-clockwise step.
// // Create the half-step state table (emits a code at 00 and 11)
// #define R_START 0x0
// #define H_CCW_BEGIN 0x1
// #define H_CW_BEGIN 0x2
// #define H_START_M 0x3
// #define H_CW_BEGIN_M 0x4
// #define H_CCW_BEGIN_M 0x5
// static const uint8_t _ttable_half[TABLE_ROWS][TABLE_COLS] = {
// // 00 01 10 11 // BA
// {H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
// {H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
// {H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
// {H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
// {H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
// {H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
// };
// // Create the full-step state table (emits a code at 00 only)
// #define F_CW_FINAL 0x1
// #define F_CW_BEGIN 0x2
// #define F_CW_NEXT 0x3
// #define F_CCW_BEGIN 0x4
// #define F_CCW_FINAL 0x5
// #define F_CCW_NEXT 0x6
// static const uint8_t _ttable_full[TABLE_ROWS][TABLE_COLS] = {
// // 00 01 10 11 // BA
// {R_START, F_CW_BEGIN, F_CCW_BEGIN, R_START}, // R_START
// {F_CW_NEXT, R_START, F_CW_FINAL, R_START | DIR_CW}, // F_CW_FINAL
// {F_CW_NEXT, F_CW_BEGIN, R_START, R_START}, // F_CW_BEGIN
// {F_CW_NEXT, F_CW_BEGIN, F_CW_FINAL, R_START}, // F_CW_NEXT
// {F_CCW_NEXT, R_START, F_CCW_BEGIN, R_START}, // F_CCW_BEGIN
// {F_CCW_NEXT, F_CCW_FINAL, R_START, R_START | DIR_CCW}, // F_CCW_FINAL
// {F_CCW_NEXT, F_CCW_FINAL, F_CCW_BEGIN, R_START}, // F_CCW_NEXT
// };
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config);
static esp_err_t _zh_encoder_gpio_init(const zh_encoder_init_config_t *config);
static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle);
@@ -102,21 +50,36 @@ ESP_EVENT_DEFINE_BASE(ZH_ENCODER);
esp_err_t zh_encoder_init(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle)
{
_zh_encoder_validate_config(config);
_zh_encoder_gpio_init(config);
ZH_ENCODER_LOGI("Encoder initialization started.");
esp_err_t err = _zh_encoder_validate_config(config);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Encoder initialization failed. Initial configuration check failed.");
ZH_ENCODER_LOGI("Encoder initial configuration check completed successfully.");
handle->encoder_number = config->encoder_number;
handle->encoder_min_value = config->encoder_min_value;
handle->encoder_max_value = config->encoder_max_value;
handle->encoder_step = config->encoder_step;
handle->encoder_position = (handle->encoder_min_value + handle->encoder_max_value) / 2;
err = _zh_encoder_gpio_init(config);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Encoder initialization failed. GPIO initialization failed.");
ZH_ENCODER_LOGI("Encoder GPIO initialization completed successfully.");
handle->a_gpio_number = config->a_gpio_number;
handle->b_gpio_number = config->b_gpio_number;
_zh_encoder_configure_interrupts(config, handle);
_zh_encoder_init_resources(config);
_zh_encoder_create_task(config);
handle->table = &_encoder_matrix[0]; // enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
handle->table_state = R_START;
handle->state.position = 0;
handle->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
err = _zh_encoder_configure_interrupts(config, handle);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Encoder initialization failed. Interrupt initialization failed.");
ZH_ENCODER_LOGI("Encoder interrupt initialization completed successfully.");
err = _zh_encoder_init_resources(config);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Encoder initialization failed. Resources initialization failed.");
ZH_ENCODER_LOGI("Encoder resources initialization completed successfully.");
err = _zh_encoder_create_task(config);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Encoder initialization failed. Processing task initialization failed.");
ZH_ENCODER_LOGI("Encoder processing task initialization completed successfully.");
handle->is_initialized = true;
_is_initialized = true;
ZH_ENCODER_LOGI("Encoder initialization completed successfully.");
return ESP_OK;
}
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, float position)
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, double position)
{
ZH_ENCODER_LOGI("Encoder set position started.");
ZH_ENCODER_CHECK(handle->is_initialized == true, ESP_FAIL, "Encoder set position failed. Encoder not initialized.");
@@ -134,219 +97,14 @@ esp_err_t zh_encoder_reset(zh_encoder_handle_t *handle)
ZH_ENCODER_LOGI("Encoder reset completed successfully.");
return ESP_OK;
}
// static uint8_t _process(rotary_encoder_info_t *info)
// {
// uint8_t event = 0;
// if (info != NULL)
// {
// // Get state of input pins.
// uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
// // Determine new state from the pins and state table.
// #ifdef ROTARY_ENCODER_DEBUG
// uint8_t old_state = info->table_state;
// #endif
// info->table_state = info->table[info->table_state & 0xf][pin_state];
// // Return emit bits, i.e. the generated event.
// event = info->table_state & 0x30;
// #ifdef ROTARY_ENCODER_DEBUG
// ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
// pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
// #endif
// }
// return event;
// }
// static void IRAM_ATTR _isr_rotenc(void *args)
// {
// rotary_encoder_info_t *info = (rotary_encoder_info_t *)args;
// uint8_t event = _process(info);
// bool send_event = false;
// switch (event)
// {
// case DIR_CW:
// ++info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
// send_event = true;
// break;
// case DIR_CCW:
// --info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
// send_event = true;
// break;
// default:
// break;
// }
// if (send_event && info->queue)
// {
// rotary_encoder_event_t queue_event =
// {
// .state =
// {
// .position = info->state.position,
// .direction = info->state.direction,
// },
// };
// BaseType_t task_woken = pdFALSE;
// xQueueSendFromISR(info->queue, &queue_event, &task_woken);
// if (task_woken)
// {
// portYIELD_FROM_ISR();
// }
// }
// }
// esp_err_t rotary_encoder_init(rotary_encoder_info_t *info, gpio_num_t pin_a, gpio_num_t pin_b)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->pin_a = pin_a;
// info->pin_b = pin_b;
// info->table = &_ttable_full[0]; // enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
// info->table_state = R_START;
// info->state.position = 0;
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// gpio_config_t pin_config = {
// .mode = GPIO_MODE_INPUT,
// .pin_bit_mask = (1ULL << info->pin_a) | (1ULL << info->pin_b),
// .pull_up_en = GPIO_PULLUP_ENABLE,
// .intr_type = GPIO_INTR_ANYEDGE};
// gpio_config(&pin_config);
// // configure GPIOs
// // gpio_pad_select_gpio(info->pin_a);
// // gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
// // gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
// // gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
// // gpio_pad_select_gpio(info->pin_b);
// // gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
// // gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
// // gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
// // install interrupt handlers
// gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
// gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t *info, bool enable)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->table = enable ? &_ttable_half[0] : &_ttable_full[0];
// info->table_state = R_START;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// gpio_num_t temp = info->pin_a;
// info->pin_a = info->pin_b;
// info->pin_b = temp;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_uninit(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// gpio_isr_handler_remove(info->pin_a);
// gpio_isr_handler_remove(info->pin_b);
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// QueueHandle_t rotary_encoder_create_queue(void)
// {
// return xQueueCreate(EVENT_QUEUE_LENGTH, sizeof(rotary_encoder_event_t));
// }
// esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t *info, QueueHandle_t queue)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->queue = queue;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t *info, rotary_encoder_state_t *state)
// {
// esp_err_t err = ESP_OK;
// if (info && state)
// {
// // make a snapshot of the state
// state->position = info->state.position;
// state->direction = info->state.direction;
// }
// else
// {
// ESP_LOGE(TAG, "info and/or state is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_reset(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->state.position = 0;
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config)
{
ZH_ENCODER_CHECK(config != NULL, ESP_ERR_INVALID_ARG, "Invalid configuration.");
ZH_ENCODER_CHECK(config->task_priority >= 10 && config->stack_size >= 2048, ESP_ERR_INVALID_ARG, "Invalid task settings.");
ZH_ENCODER_CHECK(config->task_priority >= 10 && config->stack_size >= 3072, ESP_ERR_INVALID_ARG, "Invalid task settings.");
ZH_ENCODER_CHECK(config->queue_size >= 10, ESP_ERR_INVALID_ARG, "Invalid queue size.");
ZH_ENCODER_CHECK(config->encoder_max_value > config->encoder_min_value, ESP_ERR_INVALID_ARG, "Invalid encoder min/max value.");
ZH_ENCODER_CHECK(config->encoder_step > 0, ESP_ERR_INVALID_ARG, "Invalid encoder step.");
return ESP_OK;
}
@@ -371,8 +129,6 @@ static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
err = gpio_isr_handler_add(config->b_gpio_number, _zh_encoder_isr_handler, handle);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
// printf("queue.b_gpio_number %d\n", handle->b_gpio_number);
// printf("queue.q_gpio_number %d\n", handle->a_gpio_number);
return ESP_OK;
}
@@ -403,135 +159,60 @@ static esp_err_t _zh_encoder_create_task(const zh_encoder_init_config_t *config)
return ESP_OK;
}
static void _zh_encoder_isr_handler(void *arg)
static void IRAM_ATTR _zh_encoder_isr_handler(void *arg)
{
zh_encoder_handle_t *queue = (zh_encoder_handle_t *)arg;
zh_encoder_handle_t *encoder_handle = (zh_encoder_handle_t *)arg;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
uint8_t pin_state = (gpio_get_level(queue->b_gpio_number) << 1) | gpio_get_level(queue->a_gpio_number);
// printf("pin_state %d\n", pin_state);
queue->table_state = queue->table[queue->table_state & 0xf][pin_state];
uint8_t event = queue->table_state & 0x30;
switch (event)
encoder_handle->encoder_state = _encoder_matrix[encoder_handle->encoder_state & 0x0F]
[(gpio_get_level(encoder_handle->b_gpio_number) << 1) | gpio_get_level(encoder_handle->a_gpio_number)];
switch (encoder_handle->encoder_state & 0x30)
{
case DIR_CW:
++queue->state.position;
queue->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
// printf("event %d\n", event);
// send_event = true;
// printf("state.position %ld\n", queue->state.position);
xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
case ZH_ENCODER_DIRECTION_CW:
if (encoder_handle->encoder_position < encoder_handle->encoder_max_value)
{
encoder_handle->encoder_position = encoder_handle->encoder_position + encoder_handle->encoder_step;
if (encoder_handle->encoder_position > encoder_handle->encoder_max_value)
{
encoder_handle->encoder_position = encoder_handle->encoder_max_value;
}
xQueueSendFromISR(_queue_handle, encoder_handle, &xHigherPriorityTaskWoken);
}
break;
case DIR_CCW:
--queue->state.position;
queue->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
// printf("event %d\n", event);
// send_event = true;
// printf("state.position %ld\n", queue.state.position);
xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
case ZH_ENCODER_DIRECTION_CCW:
if (encoder_handle->encoder_position > encoder_handle->encoder_min_value)
{
encoder_handle->encoder_position = encoder_handle->encoder_position - encoder_handle->encoder_step;
if (encoder_handle->encoder_position < encoder_handle->encoder_min_value)
{
encoder_handle->encoder_position = encoder_handle->encoder_min_value;
}
xQueueSendFromISR(_queue_handle, encoder_handle, &xHigherPriorityTaskWoken);
}
break;
default:
break;
}
// BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE)
{
portYIELD_FROM_ISR();
};
}
static void _zh_encoder_isr_processing_task(void *pvParameter)
static void IRAM_ATTR _zh_encoder_isr_processing_task(void *pvParameter)
{
zh_encoder_handle_t queue = {0};
zh_encoder_event_on_isr_t encoder_data = {0};
while (xQueueReceive(_queue_handle, &queue, portMAX_DELAY) == pdTRUE)
{
// printf("queue.b_gpio_number %d\n", queue.b_gpio_number);
// printf("queue.q_gpio_number %d\n", queue.a_gpio_number);
// uint8_t pin_state = (gpio_get_level(queue.b_gpio_number) << 1) | gpio_get_level(queue.a_gpio_number);
// // printf("pin_state %d\n", pin_state);
// queue.table_state = queue.table[queue.table_state & 0xf][pin_state];
// uint8_t event = queue.table_state & 0x30;
// switch (event)
// {
// case DIR_CW:
// ++queue.state.position;
// queue.state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
// printf("event %d\n", event);
// // send_event = true;
// printf("state.position %ld\n", queue.state.position);
// break;
// case DIR_CCW:
// --queue.state.position;
// queue.state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
// printf("event %d\n", event);
// // send_event = true;
// printf("state.position %ld\n", queue.state.position);
// break;
// default:
// break;
// }
printf("state.position %ld\n", queue.state.position);
ZH_ENCODER_LOGI("Encoder isr processing begin.");
encoder_data.encoder_number = queue.encoder_number;
encoder_data.encoder_position = queue.encoder_position;
esp_err_t err = esp_event_post(ZH_ENCODER, 0, &encoder_data, sizeof(zh_encoder_event_on_isr_t), portTICK_PERIOD_MS);
if (err != ESP_OK)
{
ZH_ENCODER_LOGE_ERR("Encoder isr processing failed. Failed to post interrupt event.", err);
}
ZH_ENCODER_LOGI("Encoder isr processing completed successfully.");
}
vTaskDelete(NULL);
// rotary_encoder_info_t *info = (rotary_encoder_info_t *)args;
// uint8_t event = 0;
// if (info != NULL)
// {
// // Get state of input pins.
// uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
// // Determine new state from the pins and state table.
// #ifdef ROTARY_ENCODER_DEBUG
// uint8_t old_state = info->table_state;
// #endif
// queue.table_state = queue.table[queue.table_state & 0xf][pin_state];
// // Return emit bits, i.e. the generated event.
// event = queue.table_state & 0x30;
// #ifdef ROTARY_ENCODER_DEBUG
// ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
// pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
// #endif
// }
// return event;
// uint8_t event = _process(info);
// bool send_event = false;
// switch (event)
// {
// case DIR_CW:
// ++info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
// // send_event = true;
// break;
// case DIR_CCW:
// --info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
// send_event = true;
// break;
// default:
// break;
// }
// if (send_event && info->queue)
// {
// rotary_encoder_event_t queue_event =
// {
// .state =
// {
// .position = info->state.position,
// .direction = info->state.direction,
// },
// };
// BaseType_t task_woken = pdFALSE;
// xQueueSendFromISR(info->queue, &queue_event, &task_woken);
// if (task_woken)
// {
// portYIELD_FROM_ISR();
// }
// }
}