# esp_component_template esp_component_template #include "zh_encoder.h" zh_encoder_handle_t encoder_handle = {0}; void zh_encoder_event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data); // #define ROT_ENC_A_GPIO (CONFIG_ROT_ENC_A_GPIO) // #define ROT_ENC_B_GPIO (CONFIG_ROT_ENC_B_GPIO) // #define ENABLE_HALF_STEPS false // Set to true to enable tracking of rotary encoder at half step resolution // #define RESET_AT 0 // Set to a positive non-zero number to reset the position if this value is exceeded // #define FLIP_DIRECTION false // Set to true to reverse the clockwise/counterclockwise sense void app_main(void) { esp_log_level_set("zh_encoder", ESP_LOG_NONE); // For ESP8266 first enable "Component config -> Log output -> Enable log set level" via menuconfig. esp_event_loop_create_default(); #ifdef CONFIG_IDF_TARGET_ESP8266 esp_event_handler_register(ZH_ENCODER, ESP_EVENT_ANY_ID, &zh_encoder_event_handler, NULL); #else esp_event_handler_instance_register(ZH_ENCODER, ESP_EVENT_ANY_ID, &zh_encoder_event_handler, NULL, NULL); #endif zh_encoder_init_config_t encoder_init_config = ZH_ENCODER_INIT_CONFIG_DEFAULT(); encoder_init_config.a_gpio_number = GPIO_NUM_26; encoder_init_config.b_gpio_number = GPIO_NUM_27; encoder_init_config.encoder_min_value = -10; // Just for example. encoder_init_config.encoder_max_value = 20; // Just for example. encoder_init_config.encoder_step = 0.1; // Just for example. encoder_init_config.encoder_number = 1; zh_encoder_init(&encoder_init_config, &encoder_handle); zh_encoder_reset(&encoder_handle); // Just for example. zh_encoder_set(&encoder_handle, 5); // Just for example. // esp32-rotary-encoder requires that the GPIO ISR service is installed before calling rotary_encoder_register() // ESP_ERROR_CHECK(gpio_install_isr_service(0)); // // Initialise the rotary encoder device with the GPIOs for A and B signals // rotary_encoder_info_t info = { 0 }; // ESP_ERROR_CHECK(rotary_encoder_init(&info, ROT_ENC_A_GPIO, ROT_ENC_B_GPIO)); // ESP_ERROR_CHECK(rotary_encoder_enable_half_steps(&info, ENABLE_HALF_STEPS)); // #ifdef FLIP_DIRECTION // // ESP_ERROR_CHECK(rotary_encoder_flip_direction(&info)); // #endif // // Create a queue for events from the rotary encoder driver. // // Tasks can read from this queue to receive up to date position information. // QueueHandle_t event_queue = rotary_encoder_create_queue(); // ESP_ERROR_CHECK(rotary_encoder_set_queue(&info, event_queue)); // while (1) // { // // Wait for incoming events on the event queue. // rotary_encoder_event_t event = { 0 }; // if (xQueueReceive(event_queue, &event, portMAX_DELAY) == pdTRUE) // { // ESP_LOGI(TAG, "Event: position %ld, direction %s", event.state.position, // event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET"); // } // // else // { // // Poll current position and direction // rotary_encoder_state_t state = { 0 }; // ESP_ERROR_CHECK(rotary_encoder_get_state(&info, &state)); // ESP_LOGI(TAG, "Poll: position %ld, direction %s", state.position, // state.direction ? (state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET"); // // Reset the device // if (RESET_AT && (state.position >= RESET_AT || state.position <= -RESET_AT)) // { // ESP_LOGI(TAG, "Reset"); // ESP_ERROR_CHECK(rotary_encoder_reset(&info)); // } // } // } // ESP_LOGE(TAG, "queue receive failed"); // ESP_ERROR_CHECK(rotary_encoder_uninit(&info)); } void zh_encoder_event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { zh_encoder_event_on_isr_t *event = event_data; printf("Uncoder number %d position %f.\n", event->encoder_number, event->encoder_position); }