Files
zh_encoder/zh_encoder.c
2025-06-08 13:00:28 +03:00

410 lines
14 KiB
C

#include "zh_encoder.h"
#define TAG "zh_encoder"
#define ZH_ENCODER_LOGI(msg, ...) ESP_LOGI(TAG, msg, ##__VA_ARGS__)
#define ZH_ENCODER_LOGW(msg, ...) ESP_LOGW(TAG, msg, ##__VA_ARGS__)
#define ZH_ENCODER_LOGE(msg, ...) ESP_LOGE(TAG, msg, ##__VA_ARGS__)
#define ZH_ENCODER_LOGE_ERR(msg, err, ...) ESP_LOGE(TAG, "[%s:%d:%s] " msg, __FILE__, __LINE__, esp_err_to_name(err), ##__VA_ARGS__)
#define ZH_ENCODER_CHECK(cond, err, msg, ...) \
if (!(cond)) \
{ \
ZH_ENCODER_LOGE_ERR(msg, err); \
return err; \
}
#define TABLE_ROWS 7
#define TABLE_COLS 4
#define DIR_NONE 0x0 // No complete step yet.
#define DIR_CW 0x10 // Clockwise step.
#define DIR_CCW 0x20 // Anti-clockwise step.
// Create the half-step state table (emits a code at 00 and 11)
#define R_START 0x0
#define H_CCW_BEGIN 0x1
#define H_CW_BEGIN 0x2
#define H_START_M 0x3
#define H_CW_BEGIN_M 0x4
#define H_CCW_BEGIN_M 0x5
static const uint8_t _encoder_matrix[TABLE_ROWS][TABLE_COLS] = {
// 00 01 10 11 // BA
{H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
{H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
{H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
{H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
{H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
{H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
};
static QueueHandle_t _queue_handle = NULL;
static bool _is_initialized = false;
// #define ROTARY_ENCODER_DEBUG
// Use a single-item queue so that the last value can be easily overwritten by the interrupt handler
// #define EVENT_QUEUE_LENGTH 10
// #define TABLE_ROWS 7
// #define DIR_NONE 0x0 // No complete step yet.
// #define DIR_CW 0x10 // Clockwise step.
// #define DIR_CCW 0x20 // Anti-clockwise step.
// // Create the half-step state table (emits a code at 00 and 11)
// #define R_START 0x0
// #define H_CCW_BEGIN 0x1
// #define H_CW_BEGIN 0x2
// #define H_START_M 0x3
// #define H_CW_BEGIN_M 0x4
// #define H_CCW_BEGIN_M 0x5
// static const uint8_t _ttable_half[TABLE_ROWS][TABLE_COLS] = {
// // 00 01 10 11 // BA
// {H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
// {H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
// {H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
// {H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
// {H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
// {H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
// };
// // Create the full-step state table (emits a code at 00 only)
// #define F_CW_FINAL 0x1
// #define F_CW_BEGIN 0x2
// #define F_CW_NEXT 0x3
// #define F_CCW_BEGIN 0x4
// #define F_CCW_FINAL 0x5
// #define F_CCW_NEXT 0x6
// static const uint8_t _ttable_full[TABLE_ROWS][TABLE_COLS] = {
// // 00 01 10 11 // BA
// {R_START, F_CW_BEGIN, F_CCW_BEGIN, R_START}, // R_START
// {F_CW_NEXT, R_START, F_CW_FINAL, R_START | DIR_CW}, // F_CW_FINAL
// {F_CW_NEXT, F_CW_BEGIN, R_START, R_START}, // F_CW_BEGIN
// {F_CW_NEXT, F_CW_BEGIN, F_CW_FINAL, R_START}, // F_CW_NEXT
// {F_CCW_NEXT, R_START, F_CCW_BEGIN, R_START}, // F_CCW_BEGIN
// {F_CCW_NEXT, F_CCW_FINAL, R_START, R_START | DIR_CCW}, // F_CCW_FINAL
// {F_CCW_NEXT, F_CCW_FINAL, F_CCW_BEGIN, R_START}, // F_CCW_NEXT
// };
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config);
static esp_err_t _zh_encoder_gpio_init(const zh_encoder_init_config_t *config);
static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle);
static esp_err_t _zh_encoder_init_resources(const zh_encoder_init_config_t *config);
static esp_err_t _zh_encoder_create_task(const zh_encoder_init_config_t *config);
static void _zh_encoder_isr_handler(void *arg);
static void _zh_encoder_isr_processing_task(void *pvParameter);
ESP_EVENT_DEFINE_BASE(ZH_ENCODER);
esp_err_t zh_encoder_init(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle)
{
_zh_encoder_validate_config(config);
_zh_encoder_gpio_init(config);
_zh_encoder_configure_interrupts(config, handle);
_zh_encoder_init_resources(config);
_zh_encoder_create_task(config);
return ESP_OK;
}
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, float position)
{
ZH_ENCODER_LOGI("Encoder set position started.");
ZH_ENCODER_CHECK(handle->is_initialized == true, ESP_FAIL, "Encoder set position failed. Encoder not initialized.");
ZH_ENCODER_CHECK(position <= handle->encoder_max_value && position >= handle->encoder_min_value, ESP_ERR_INVALID_ARG, "Encoder set position failed. Invalid argument.");
handle->encoder_position = position;
ZH_ENCODER_LOGI("Encoder set position completed successfully.");
return ESP_OK;
}
esp_err_t zh_encoder_reset(zh_encoder_handle_t *handle)
{
ZH_ENCODER_LOGI("Encoder reset started.");
ZH_ENCODER_CHECK(handle->is_initialized == true, ESP_FAIL, "Encoder reset failed. Encoder not initialized.");
handle->encoder_position = (handle->encoder_min_value + handle->encoder_max_value) / 2;
ZH_ENCODER_LOGI("Encoder reset completed successfully.");
return ESP_OK;
}
// static uint8_t _process(rotary_encoder_info_t *info)
// {
// uint8_t event = 0;
// if (info != NULL)
// {
// // Get state of input pins.
// uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
// // Determine new state from the pins and state table.
// #ifdef ROTARY_ENCODER_DEBUG
// uint8_t old_state = info->table_state;
// #endif
// info->table_state = info->table[info->table_state & 0xf][pin_state];
// // Return emit bits, i.e. the generated event.
// event = info->table_state & 0x30;
// #ifdef ROTARY_ENCODER_DEBUG
// ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
// pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
// #endif
// }
// return event;
// }
// static void IRAM_ATTR _isr_rotenc(void *args)
// {
// rotary_encoder_info_t *info = (rotary_encoder_info_t *)args;
// uint8_t event = _process(info);
// bool send_event = false;
// switch (event)
// {
// case DIR_CW:
// ++info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
// send_event = true;
// break;
// case DIR_CCW:
// --info->state.position;
// info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
// send_event = true;
// break;
// default:
// break;
// }
// if (send_event && info->queue)
// {
// rotary_encoder_event_t queue_event =
// {
// .state =
// {
// .position = info->state.position,
// .direction = info->state.direction,
// },
// };
// BaseType_t task_woken = pdFALSE;
// xQueueSendFromISR(info->queue, &queue_event, &task_woken);
// if (task_woken)
// {
// portYIELD_FROM_ISR();
// }
// }
// }
// esp_err_t rotary_encoder_init(rotary_encoder_info_t *info, gpio_num_t pin_a, gpio_num_t pin_b)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->pin_a = pin_a;
// info->pin_b = pin_b;
// info->table = &_ttable_full[0]; // enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
// info->table_state = R_START;
// info->state.position = 0;
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// gpio_config_t pin_config = {
// .mode = GPIO_MODE_INPUT,
// .pin_bit_mask = (1ULL << info->pin_a) | (1ULL << info->pin_b),
// .pull_up_en = GPIO_PULLUP_ENABLE,
// .intr_type = GPIO_INTR_ANYEDGE};
// gpio_config(&pin_config);
// // configure GPIOs
// // gpio_pad_select_gpio(info->pin_a);
// // gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
// // gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
// // gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
// // gpio_pad_select_gpio(info->pin_b);
// // gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
// // gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
// // gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
// // install interrupt handlers
// gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
// gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t *info, bool enable)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->table = enable ? &_ttable_half[0] : &_ttable_full[0];
// info->table_state = R_START;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// gpio_num_t temp = info->pin_a;
// info->pin_a = info->pin_b;
// info->pin_b = temp;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_uninit(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// gpio_isr_handler_remove(info->pin_a);
// gpio_isr_handler_remove(info->pin_b);
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// QueueHandle_t rotary_encoder_create_queue(void)
// {
// return xQueueCreate(EVENT_QUEUE_LENGTH, sizeof(rotary_encoder_event_t));
// }
// esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t *info, QueueHandle_t queue)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->queue = queue;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t *info, rotary_encoder_state_t *state)
// {
// esp_err_t err = ESP_OK;
// if (info && state)
// {
// // make a snapshot of the state
// state->position = info->state.position;
// state->direction = info->state.direction;
// }
// else
// {
// ESP_LOGE(TAG, "info and/or state is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
// esp_err_t rotary_encoder_reset(rotary_encoder_info_t *info)
// {
// esp_err_t err = ESP_OK;
// if (info)
// {
// info->state.position = 0;
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// }
// else
// {
// ESP_LOGE(TAG, "info is NULL");
// err = ESP_ERR_INVALID_ARG;
// }
// return err;
// }
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config)
{
ZH_ENCODER_CHECK(config != NULL, ESP_ERR_INVALID_ARG, "Invalid configuration.");
ZH_ENCODER_CHECK(config->task_priority >= 10 && config->stack_size >= 2048, ESP_ERR_INVALID_ARG, "Invalid task settings.");
ZH_ENCODER_CHECK(config->queue_size >= 10, ESP_ERR_INVALID_ARG, "Invalid queue size.");
return ESP_OK;
}
static esp_err_t _zh_encoder_gpio_init(const zh_encoder_init_config_t *config)
{
ZH_ENCODER_CHECK(config->a_gpio_number < GPIO_NUM_MAX || config->b_gpio_number < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG, "Invalid GPIO number.")
ZH_ENCODER_CHECK(config->a_gpio_number != config->b_gpio_number, ESP_ERR_INVALID_ARG, "Invalid GPIO number.")
gpio_config_t pin_config = {
.mode = GPIO_MODE_INPUT,
.pin_bit_mask = (1ULL << config->a_gpio_number) | (1ULL << config->b_gpio_number),
.pull_up_en = GPIO_PULLUP_ENABLE,
.intr_type = GPIO_INTR_ANYEDGE};
esp_err_t err = gpio_config(&pin_config);
ZH_ENCODER_CHECK(err == ESP_OK, err, "GPIO initialization failed.");
return ESP_OK;
}
static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle)
{
gpio_install_isr_service(0);
esp_err_t err = gpio_isr_handler_add(config->a_gpio_number, _zh_encoder_isr_handler, handle);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
err = gpio_isr_handler_add(config->b_gpio_number, _zh_encoder_isr_handler, handle);
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
return ESP_OK;
}
static esp_err_t _zh_encoder_init_resources(const zh_encoder_init_config_t *config)
{
if (_is_initialized == false)
{
_queue_handle = xQueueCreate(config->queue_size, sizeof(zh_encoder_handle_t));
ZH_ENCODER_CHECK(_queue_handle != NULL, ESP_FAIL, "Queue creation failed.");
}
return ESP_OK;
}
static esp_err_t _zh_encoder_create_task(const zh_encoder_init_config_t *config)
{
if (_is_initialized == false)
{
BaseType_t err = xTaskCreatePinnedToCore(
&_zh_encoder_isr_processing_task,
"zh_encoder_isr_processing",
config->stack_size,
NULL,
config->task_priority,
NULL,
tskNO_AFFINITY);
ZH_ENCODER_CHECK(err == pdPASS, ESP_FAIL, "Task creation failed.");
}
return ESP_OK;
}
static void _zh_encoder_isr_handler(void *arg)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xQueueSendFromISR(_queue_handle, arg, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE)
{
portYIELD_FROM_ISR();
};
}
static void _zh_encoder_isr_processing_task(void *pvParameter)
{
}