537 lines
19 KiB
C
537 lines
19 KiB
C
#include "zh_encoder.h"
|
|
|
|
#define TAG "zh_encoder"
|
|
|
|
#define ZH_ENCODER_LOGI(msg, ...) ESP_LOGI(TAG, msg, ##__VA_ARGS__)
|
|
#define ZH_ENCODER_LOGW(msg, ...) ESP_LOGW(TAG, msg, ##__VA_ARGS__)
|
|
#define ZH_ENCODER_LOGE(msg, ...) ESP_LOGE(TAG, msg, ##__VA_ARGS__)
|
|
#define ZH_ENCODER_LOGE_ERR(msg, err, ...) ESP_LOGE(TAG, "[%s:%d:%s] " msg, __FILE__, __LINE__, esp_err_to_name(err), ##__VA_ARGS__)
|
|
|
|
#define ZH_ENCODER_CHECK(cond, err, msg, ...) \
|
|
if (!(cond)) \
|
|
{ \
|
|
ZH_ENCODER_LOGE_ERR(msg, err); \
|
|
return err; \
|
|
}
|
|
|
|
#define TABLE_ROWS 7
|
|
#define TABLE_COLS 4
|
|
|
|
#define DIR_NONE 0x0 // No complete step yet.
|
|
#define DIR_CW 0x10 // Clockwise step.
|
|
#define DIR_CCW 0x20 // Anti-clockwise step.
|
|
|
|
// Create the half-step state table (emits a code at 00 and 11)
|
|
#define R_START 0x0
|
|
#define H_CCW_BEGIN 0x1
|
|
#define H_CW_BEGIN 0x2
|
|
#define H_START_M 0x3
|
|
#define H_CW_BEGIN_M 0x4
|
|
#define H_CCW_BEGIN_M 0x5
|
|
|
|
static const uint8_t _encoder_matrix[TABLE_ROWS][TABLE_COLS] = {
|
|
// 00 01 10 11 // BA
|
|
{H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
|
|
{H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
|
|
{H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
|
|
{H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
|
|
{H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
|
|
{H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
|
|
};
|
|
|
|
static QueueHandle_t _queue_handle = NULL;
|
|
static bool _is_initialized = false;
|
|
|
|
// #define ROTARY_ENCODER_DEBUG
|
|
|
|
// Use a single-item queue so that the last value can be easily overwritten by the interrupt handler
|
|
// #define EVENT_QUEUE_LENGTH 10
|
|
|
|
// #define TABLE_ROWS 7
|
|
|
|
// #define DIR_NONE 0x0 // No complete step yet.
|
|
// #define DIR_CW 0x10 // Clockwise step.
|
|
// #define DIR_CCW 0x20 // Anti-clockwise step.
|
|
|
|
// // Create the half-step state table (emits a code at 00 and 11)
|
|
// #define R_START 0x0
|
|
// #define H_CCW_BEGIN 0x1
|
|
// #define H_CW_BEGIN 0x2
|
|
// #define H_START_M 0x3
|
|
// #define H_CW_BEGIN_M 0x4
|
|
// #define H_CCW_BEGIN_M 0x5
|
|
|
|
// static const uint8_t _ttable_half[TABLE_ROWS][TABLE_COLS] = {
|
|
// // 00 01 10 11 // BA
|
|
// {H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
|
|
// {H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
|
|
// {H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
|
|
// {H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
|
|
// {H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
|
|
// {H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
|
|
// };
|
|
|
|
// // Create the full-step state table (emits a code at 00 only)
|
|
// #define F_CW_FINAL 0x1
|
|
// #define F_CW_BEGIN 0x2
|
|
// #define F_CW_NEXT 0x3
|
|
// #define F_CCW_BEGIN 0x4
|
|
// #define F_CCW_FINAL 0x5
|
|
// #define F_CCW_NEXT 0x6
|
|
|
|
// static const uint8_t _ttable_full[TABLE_ROWS][TABLE_COLS] = {
|
|
// // 00 01 10 11 // BA
|
|
// {R_START, F_CW_BEGIN, F_CCW_BEGIN, R_START}, // R_START
|
|
// {F_CW_NEXT, R_START, F_CW_FINAL, R_START | DIR_CW}, // F_CW_FINAL
|
|
// {F_CW_NEXT, F_CW_BEGIN, R_START, R_START}, // F_CW_BEGIN
|
|
// {F_CW_NEXT, F_CW_BEGIN, F_CW_FINAL, R_START}, // F_CW_NEXT
|
|
// {F_CCW_NEXT, R_START, F_CCW_BEGIN, R_START}, // F_CCW_BEGIN
|
|
// {F_CCW_NEXT, F_CCW_FINAL, R_START, R_START | DIR_CCW}, // F_CCW_FINAL
|
|
// {F_CCW_NEXT, F_CCW_FINAL, F_CCW_BEGIN, R_START}, // F_CCW_NEXT
|
|
// };
|
|
|
|
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config);
|
|
static esp_err_t _zh_encoder_gpio_init(const zh_encoder_init_config_t *config);
|
|
static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle);
|
|
static esp_err_t _zh_encoder_init_resources(const zh_encoder_init_config_t *config);
|
|
static esp_err_t _zh_encoder_create_task(const zh_encoder_init_config_t *config);
|
|
static void _zh_encoder_isr_handler(void *arg);
|
|
static void _zh_encoder_isr_processing_task(void *pvParameter);
|
|
|
|
ESP_EVENT_DEFINE_BASE(ZH_ENCODER);
|
|
|
|
esp_err_t zh_encoder_init(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle)
|
|
{
|
|
_zh_encoder_validate_config(config);
|
|
_zh_encoder_gpio_init(config);
|
|
handle->a_gpio_number = config->a_gpio_number;
|
|
handle->b_gpio_number = config->b_gpio_number;
|
|
_zh_encoder_configure_interrupts(config, handle);
|
|
_zh_encoder_init_resources(config);
|
|
_zh_encoder_create_task(config);
|
|
handle->table = &_encoder_matrix[0]; // enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
|
|
handle->table_state = R_START;
|
|
handle->state.position = 0;
|
|
handle->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t zh_encoder_set(zh_encoder_handle_t *handle, float position)
|
|
{
|
|
ZH_ENCODER_LOGI("Encoder set position started.");
|
|
ZH_ENCODER_CHECK(handle->is_initialized == true, ESP_FAIL, "Encoder set position failed. Encoder not initialized.");
|
|
ZH_ENCODER_CHECK(position <= handle->encoder_max_value && position >= handle->encoder_min_value, ESP_ERR_INVALID_ARG, "Encoder set position failed. Invalid argument.");
|
|
handle->encoder_position = position;
|
|
ZH_ENCODER_LOGI("Encoder set position completed successfully.");
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t zh_encoder_reset(zh_encoder_handle_t *handle)
|
|
{
|
|
ZH_ENCODER_LOGI("Encoder reset started.");
|
|
ZH_ENCODER_CHECK(handle->is_initialized == true, ESP_FAIL, "Encoder reset failed. Encoder not initialized.");
|
|
handle->encoder_position = (handle->encoder_min_value + handle->encoder_max_value) / 2;
|
|
ZH_ENCODER_LOGI("Encoder reset completed successfully.");
|
|
return ESP_OK;
|
|
}
|
|
// static uint8_t _process(rotary_encoder_info_t *info)
|
|
// {
|
|
// uint8_t event = 0;
|
|
// if (info != NULL)
|
|
// {
|
|
// // Get state of input pins.
|
|
// uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
|
|
|
|
// // Determine new state from the pins and state table.
|
|
// #ifdef ROTARY_ENCODER_DEBUG
|
|
// uint8_t old_state = info->table_state;
|
|
// #endif
|
|
// info->table_state = info->table[info->table_state & 0xf][pin_state];
|
|
|
|
// // Return emit bits, i.e. the generated event.
|
|
// event = info->table_state & 0x30;
|
|
// #ifdef ROTARY_ENCODER_DEBUG
|
|
// ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
|
|
// pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
|
|
// #endif
|
|
// }
|
|
// return event;
|
|
// }
|
|
|
|
// static void IRAM_ATTR _isr_rotenc(void *args)
|
|
// {
|
|
// rotary_encoder_info_t *info = (rotary_encoder_info_t *)args;
|
|
// uint8_t event = _process(info);
|
|
// bool send_event = false;
|
|
|
|
// switch (event)
|
|
// {
|
|
// case DIR_CW:
|
|
// ++info->state.position;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
|
|
// send_event = true;
|
|
// break;
|
|
// case DIR_CCW:
|
|
// --info->state.position;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
|
|
// send_event = true;
|
|
// break;
|
|
// default:
|
|
// break;
|
|
// }
|
|
|
|
// if (send_event && info->queue)
|
|
// {
|
|
// rotary_encoder_event_t queue_event =
|
|
// {
|
|
// .state =
|
|
// {
|
|
// .position = info->state.position,
|
|
// .direction = info->state.direction,
|
|
// },
|
|
// };
|
|
// BaseType_t task_woken = pdFALSE;
|
|
// xQueueSendFromISR(info->queue, &queue_event, &task_woken);
|
|
// if (task_woken)
|
|
// {
|
|
// portYIELD_FROM_ISR();
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_init(rotary_encoder_info_t *info, gpio_num_t pin_a, gpio_num_t pin_b)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// info->pin_a = pin_a;
|
|
// info->pin_b = pin_b;
|
|
// info->table = &_ttable_full[0]; // enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
|
|
// info->table_state = R_START;
|
|
// info->state.position = 0;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
|
|
|
|
// gpio_config_t pin_config = {
|
|
// .mode = GPIO_MODE_INPUT,
|
|
// .pin_bit_mask = (1ULL << info->pin_a) | (1ULL << info->pin_b),
|
|
// .pull_up_en = GPIO_PULLUP_ENABLE,
|
|
// .intr_type = GPIO_INTR_ANYEDGE};
|
|
// gpio_config(&pin_config);
|
|
// // configure GPIOs
|
|
// // gpio_pad_select_gpio(info->pin_a);
|
|
// // gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
|
|
// // gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
|
|
// // gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
|
|
|
|
// // gpio_pad_select_gpio(info->pin_b);
|
|
// // gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
|
|
// // gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
|
|
// // gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
|
|
|
|
// // install interrupt handlers
|
|
// gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
|
|
// gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t *info, bool enable)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// info->table = enable ? &_ttable_half[0] : &_ttable_full[0];
|
|
// info->table_state = R_START;
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t *info)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// gpio_num_t temp = info->pin_a;
|
|
// info->pin_a = info->pin_b;
|
|
// info->pin_b = temp;
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_uninit(rotary_encoder_info_t *info)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// gpio_isr_handler_remove(info->pin_a);
|
|
// gpio_isr_handler_remove(info->pin_b);
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// QueueHandle_t rotary_encoder_create_queue(void)
|
|
// {
|
|
// return xQueueCreate(EVENT_QUEUE_LENGTH, sizeof(rotary_encoder_event_t));
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t *info, QueueHandle_t queue)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// info->queue = queue;
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t *info, rotary_encoder_state_t *state)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info && state)
|
|
// {
|
|
// // make a snapshot of the state
|
|
// state->position = info->state.position;
|
|
// state->direction = info->state.direction;
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info and/or state is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
// esp_err_t rotary_encoder_reset(rotary_encoder_info_t *info)
|
|
// {
|
|
// esp_err_t err = ESP_OK;
|
|
// if (info)
|
|
// {
|
|
// info->state.position = 0;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
|
|
// }
|
|
// else
|
|
// {
|
|
// ESP_LOGE(TAG, "info is NULL");
|
|
// err = ESP_ERR_INVALID_ARG;
|
|
// }
|
|
// return err;
|
|
// }
|
|
|
|
static esp_err_t _zh_encoder_validate_config(const zh_encoder_init_config_t *config)
|
|
{
|
|
ZH_ENCODER_CHECK(config != NULL, ESP_ERR_INVALID_ARG, "Invalid configuration.");
|
|
ZH_ENCODER_CHECK(config->task_priority >= 10 && config->stack_size >= 2048, ESP_ERR_INVALID_ARG, "Invalid task settings.");
|
|
ZH_ENCODER_CHECK(config->queue_size >= 10, ESP_ERR_INVALID_ARG, "Invalid queue size.");
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t _zh_encoder_gpio_init(const zh_encoder_init_config_t *config)
|
|
{
|
|
ZH_ENCODER_CHECK(config->a_gpio_number < GPIO_NUM_MAX || config->b_gpio_number < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG, "Invalid GPIO number.")
|
|
ZH_ENCODER_CHECK(config->a_gpio_number != config->b_gpio_number, ESP_ERR_INVALID_ARG, "Invalid GPIO number.")
|
|
gpio_config_t pin_config = {
|
|
.mode = GPIO_MODE_INPUT,
|
|
.pin_bit_mask = (1ULL << config->a_gpio_number) | (1ULL << config->b_gpio_number),
|
|
.pull_up_en = GPIO_PULLUP_ENABLE,
|
|
.intr_type = GPIO_INTR_ANYEDGE};
|
|
esp_err_t err = gpio_config(&pin_config);
|
|
ZH_ENCODER_CHECK(err == ESP_OK, err, "GPIO initialization failed.");
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t _zh_encoder_configure_interrupts(const zh_encoder_init_config_t *config, zh_encoder_handle_t *handle)
|
|
{
|
|
gpio_install_isr_service(0);
|
|
esp_err_t err = gpio_isr_handler_add(config->a_gpio_number, _zh_encoder_isr_handler, handle);
|
|
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
|
|
err = gpio_isr_handler_add(config->b_gpio_number, _zh_encoder_isr_handler, handle);
|
|
ZH_ENCODER_CHECK(err == ESP_OK, err, "Interrupt initialization failed.");
|
|
// printf("queue.b_gpio_number %d\n", handle->b_gpio_number);
|
|
// printf("queue.q_gpio_number %d\n", handle->a_gpio_number);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t _zh_encoder_init_resources(const zh_encoder_init_config_t *config)
|
|
{
|
|
if (_is_initialized == false)
|
|
{
|
|
_queue_handle = xQueueCreate(config->queue_size, sizeof(zh_encoder_handle_t));
|
|
ZH_ENCODER_CHECK(_queue_handle != NULL, ESP_FAIL, "Queue creation failed.");
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t _zh_encoder_create_task(const zh_encoder_init_config_t *config)
|
|
{
|
|
if (_is_initialized == false)
|
|
{
|
|
BaseType_t err = xTaskCreatePinnedToCore(
|
|
&_zh_encoder_isr_processing_task,
|
|
"zh_encoder_isr_processing",
|
|
config->stack_size,
|
|
NULL,
|
|
config->task_priority,
|
|
NULL,
|
|
tskNO_AFFINITY);
|
|
ZH_ENCODER_CHECK(err == pdPASS, ESP_FAIL, "Task creation failed.");
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void _zh_encoder_isr_handler(void *arg)
|
|
{
|
|
zh_encoder_handle_t *queue = (zh_encoder_handle_t *)arg;
|
|
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
|
uint8_t pin_state = (gpio_get_level(queue->b_gpio_number) << 1) | gpio_get_level(queue->a_gpio_number);
|
|
// printf("pin_state %d\n", pin_state);
|
|
queue->table_state = queue->table[queue->table_state & 0xf][pin_state];
|
|
uint8_t event = queue->table_state & 0x30;
|
|
switch (event)
|
|
{
|
|
case DIR_CW:
|
|
++queue->state.position;
|
|
queue->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
|
|
// printf("event %d\n", event);
|
|
// send_event = true;
|
|
// printf("state.position %ld\n", queue->state.position);
|
|
xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
|
|
break;
|
|
case DIR_CCW:
|
|
--queue->state.position;
|
|
queue->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
|
|
// printf("event %d\n", event);
|
|
// send_event = true;
|
|
// printf("state.position %ld\n", queue.state.position);
|
|
xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
|
// xQueueSendFromISR(_queue_handle, queue, &xHigherPriorityTaskWoken);
|
|
if (xHigherPriorityTaskWoken == pdTRUE)
|
|
{
|
|
portYIELD_FROM_ISR();
|
|
};
|
|
}
|
|
|
|
static void _zh_encoder_isr_processing_task(void *pvParameter)
|
|
{
|
|
zh_encoder_handle_t queue = {0};
|
|
while (xQueueReceive(_queue_handle, &queue, portMAX_DELAY) == pdTRUE)
|
|
{
|
|
// printf("queue.b_gpio_number %d\n", queue.b_gpio_number);
|
|
// printf("queue.q_gpio_number %d\n", queue.a_gpio_number);
|
|
// uint8_t pin_state = (gpio_get_level(queue.b_gpio_number) << 1) | gpio_get_level(queue.a_gpio_number);
|
|
// // printf("pin_state %d\n", pin_state);
|
|
// queue.table_state = queue.table[queue.table_state & 0xf][pin_state];
|
|
// uint8_t event = queue.table_state & 0x30;
|
|
// switch (event)
|
|
// {
|
|
// case DIR_CW:
|
|
// ++queue.state.position;
|
|
// queue.state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
|
|
// printf("event %d\n", event);
|
|
// // send_event = true;
|
|
// printf("state.position %ld\n", queue.state.position);
|
|
// break;
|
|
// case DIR_CCW:
|
|
// --queue.state.position;
|
|
// queue.state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
|
|
// printf("event %d\n", event);
|
|
// // send_event = true;
|
|
// printf("state.position %ld\n", queue.state.position);
|
|
// break;
|
|
// default:
|
|
// break;
|
|
// }
|
|
printf("state.position %ld\n", queue.state.position);
|
|
}
|
|
vTaskDelete(NULL);
|
|
|
|
// rotary_encoder_info_t *info = (rotary_encoder_info_t *)args;
|
|
|
|
// uint8_t event = 0;
|
|
// if (info != NULL)
|
|
// {
|
|
// // Get state of input pins.
|
|
// uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
|
|
|
|
// // Determine new state from the pins and state table.
|
|
// #ifdef ROTARY_ENCODER_DEBUG
|
|
// uint8_t old_state = info->table_state;
|
|
// #endif
|
|
// queue.table_state = queue.table[queue.table_state & 0xf][pin_state];
|
|
|
|
// // Return emit bits, i.e. the generated event.
|
|
// event = queue.table_state & 0x30;
|
|
// #ifdef ROTARY_ENCODER_DEBUG
|
|
// ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
|
|
// pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
|
|
// #endif
|
|
// }
|
|
// return event;
|
|
|
|
// uint8_t event = _process(info);
|
|
// bool send_event = false;
|
|
|
|
// switch (event)
|
|
// {
|
|
// case DIR_CW:
|
|
// ++info->state.position;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
|
|
// // send_event = true;
|
|
// break;
|
|
// case DIR_CCW:
|
|
// --info->state.position;
|
|
// info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
|
|
// send_event = true;
|
|
// break;
|
|
// default:
|
|
// break;
|
|
// }
|
|
|
|
// if (send_event && info->queue)
|
|
// {
|
|
// rotary_encoder_event_t queue_event =
|
|
// {
|
|
// .state =
|
|
// {
|
|
// .position = info->state.position,
|
|
// .direction = info->state.direction,
|
|
// },
|
|
// };
|
|
// BaseType_t task_woken = pdFALSE;
|
|
// xQueueSendFromISR(info->queue, &queue_event, &task_woken);
|
|
// if (task_woken)
|
|
// {
|
|
// portYIELD_FROM_ISR();
|
|
// }
|
|
// }
|
|
} |