mirror of
https://github.com/miguel5612/MQSensorsLib.git
synced 2025-07-03 10:51:03 +03:00
Compare commits
19 Commits
codex/fix-
...
master
Author | SHA1 | Date | |
---|---|---|---|
59a2e5852e | |||
30c0979cb4 | |||
6f9b00666e | |||
d2e0be3651 | |||
3cd2fd8e7d | |||
2bdb91c1b5 | |||
42689ff5f3 | |||
ea48475a3c | |||
144f480f6f | |||
46d416abad | |||
f7fae4e03c | |||
c9c1549600 | |||
af291df03d | |||
748ff3055c | |||
a6abda567f | |||
92f3c30e82 | |||
da3adb7335 | |||
14b0f908f3 | |||
6376cfc11f |
@ -68,6 +68,7 @@ float ppmCH4 = MQ4.readSensor();
|
||||
* AO -> Analog Output of the sensor
|
||||
##### Data of board that you should have
|
||||
* RL Value in KOhms
|
||||
* If the sensor uses a different supply voltage than the ADC reference, call `yourSensor.setVCC(<voltage>);`
|
||||
##### Graph
|
||||

|
||||
#### RS/R0 value (From datasheet of your sensor)
|
||||
@ -173,6 +174,10 @@ Examples/MQ-board.ino
|
||||
* [Data sheets](https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Datasheets) - Curves and behavior for each sensor, using logarithmic graphs.
|
||||
* [Main purpose](https://github.com/miguel5612/MQSensorsLib_Docs/blob/master/static/img/bg.jpg) - Every sensor has high sensibility for a specific gas or material.
|
||||
|
||||
## Issues
|
||||
|
||||
Consulte [docs/issues.md](docs/issues.md) para un resumen de los problemas abiertos y sus soluciones.
|
||||
|
||||
## Contributing
|
||||
|
||||
Please read [CONTRIBUTING.md](https://github.com/miguel5612/MQSensorsLib/blob/master/CONTRIBUTING.md) for details on our code of conduct, and the process for submitting pull requests to us.
|
||||
|
33
docs/issues.md
Normal file
33
docs/issues.md
Normal file
@ -0,0 +1,33 @@
|
||||
# Issues y soluciones
|
||||
|
||||
Este documento resume los problemas reportados en el repositorio y las soluciones propuestas o implementadas.
|
||||
|
||||
## Abiertos
|
||||
|
||||
### #75 MQ-3 sensor and CH4 gas reading 'ovf' failure
|
||||
**Estado:** resuelto en la rama `main`
|
||||
|
||||
El usuario reporta desbordamiento ("ovf") al utilizar valores muy altos en `setA` y `setB` para leer CH4 con un sensor MQ-3. La solución propuesta es revisar los valores utilizados en `setA` y `setB`, ya que `2*10^31` en C++ no corresponde a `2e31`. Se recomienda usar notación exponencial (`2e31`) o `pow(10,31)` y comprobar que los parámetros no excedan el rango de `float`.
|
||||
|
||||
**Actualización:** se añadieron validaciones de entrada, predicción de desbordamiento mediante logaritmos y verificación del resultado final para evitar valores "ovf" incluso con coeficientes muy altos. Las nuevas funciones limitan `setA` y `setB` y emplean cálculos en doble precisión.
|
||||
|
||||
### #74 possible error in the calculation formula for `_RS_Calc`
|
||||
**Estado:** resuelto en la rama `work`
|
||||
|
||||
Se detectó que la resistencia del sensor se calculaba con `_VOLT_RESOLUTION` en lugar del voltaje de alimentación real. Se añadieron los métodos `setVCC` y `getVCC` y se modificaron las ecuaciones para usar `VCC`. Esta corrección se refleja en la versión 3.0.1 de la biblioteca.
|
||||
|
||||
### #70 Parameters to model temperature and humidity dependence
|
||||
**Estado:** resuelto en la rama `work`
|
||||
|
||||
Se añadieron variables opcionales de "correction factor" en todos los ejemplos y se extendieron las funciones `calibrate` y `readSensorR0Rs` para aceptar este parámetro opcional. Así, el usuario puede ajustar las lecturas en función de temperatura y humedad cuando el datasheet lo permita. Los coeficientes deben consultarse para cada sensor.
|
||||
|
||||
### #67 Sensor won't finish the Calibration process if done in clean air
|
||||
**Estado:** abierto
|
||||
|
||||
Se reporta que la calibración se detiene mostrando un mensaje de "Conection issue" cuando se intenta calibrar el sensor MQ-135 en aire limpio. La recomendación del mantenedor es revisar la conexión física y probar el sensor con un programa básico para asegurar su correcto funcionamiento antes de usar la librería. Aún no se ha implementado un cambio en el código.
|
||||
|
||||
|
||||
## Cerrados destacados
|
||||
|
||||
Para obtener más información sobre todos los issues cerrados, consulte la página de [Issues en GitHub](https://github.com/miguel5612/MQSensorsLib/issues?q=is%3Aissue+is%3Aclosed).
|
||||
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ3.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
alcoholPPM = MQ3.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
alcoholPPM = MQ3.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
Serial.print("Alcohol now (PPM): ");
|
||||
Serial.println(alcoholPPM);
|
||||
delay(500); //Sampling frequency
|
||||
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ3.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ3.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ3.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ3.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -129,7 +129,8 @@ void loop()
|
||||
{
|
||||
MQ2.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
//MQ2.serialDebug(); // Will print the table on the serial port
|
||||
Serial.print(MQ2.readSensor()); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
Serial.print(MQ2.readSensor(false, correctionFactor)); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
Serial.println(" PPM");
|
||||
delay(500); //Sampling frequency
|
||||
}
|
||||
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ3.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ3.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ3.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ3.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -81,17 +81,18 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ4.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
|
||||
//https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
//Set math model to calculate the PPM concentration and the value of constants
|
||||
MQ4.setRegressionMethod(0); //_PPM = pow(10, (log10(ratio)-b)/a)
|
||||
MQ4.setA(-0.318); MQ4.setB(1.133); // A -> Slope, B -> Intersect with X - Axis
|
||||
float LPG1 = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float LPG1 = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
//Set math model to calculate the PPM concentration and the value of constants
|
||||
MQ4.setRegressionMethod(1); //_PPM = a*ratio^b
|
||||
MQ4.setA(1012.7); MQ4.setB(-2.786); // Configure the equation to to calculate CH4 concentration
|
||||
float LPG2 = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float LPG2 = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
// exposure to 2000 ppm of LPG gas is immediately dangerous to life and health. In this section
|
||||
if(LPG1>=2000 || LPG2>=2000) Serial.println("Warning - Very high concentrations detected!");
|
||||
|
@ -78,24 +78,25 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ135.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
|
||||
MQ135.setA(605.18); MQ135.setB(-3.937); // Configure the equation to calculate CO concentration value
|
||||
float CO = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(77.255); MQ135.setB(-3.18); //Configure the equation to calculate Alcohol concentration value
|
||||
float Alcohol = MQ135.readSensor(); // SSensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Alcohol = MQ135.readSensor(false, correctionFactor); // SSensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(110.47); MQ135.setB(-2.862); // Configure the equation to calculate CO2 concentration value
|
||||
float CO2 = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO2 = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(44.947); MQ135.setB(-3.445); // Configure the equation to calculate Toluen concentration value
|
||||
float Toluen = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Toluen = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(102.2 ); MQ135.setB(-2.473); // Configure the equation to calculate NH4 concentration value
|
||||
float NH4 = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float NH4 = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(34.668); MQ135.setB(-3.369); // Configure the equation to calculate Aceton concentration value
|
||||
float Aceton = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Aceton = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
Serial.print("| "); Serial.print(CO);
|
||||
Serial.print(" | "); Serial.print(Alcohol);
|
||||
// Note: 400 Offset for CO2 source: https://github.com/miguel5612/MQSensorsLib/issues/29
|
||||
|
@ -89,7 +89,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ135.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ135.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -82,7 +82,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ136.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ136.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ136.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ136.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ2.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ2.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ2.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ2.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -88,7 +88,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ3.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ3.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ3.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ3.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -86,7 +86,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ303.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ303.readSensor(true); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ303.readSensor(true, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ303.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -95,7 +95,8 @@ void loop() {
|
||||
// VH 0.9 Volts
|
||||
analogWrite(5, 2); // 255 is 100%, 2.295 is aprox 0.9% of Duty cycle for 60s
|
||||
MQ309.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ309.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ309.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ309.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
||||
@ -107,7 +108,8 @@ void loop() {
|
||||
// VL 0.2 Volts
|
||||
analogWrite(5, 1); // 255 is 100%, 0.51 is aprox 0.2% of Duty cycle for 120s
|
||||
MQ309.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ309.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor2 = 0; // Optional environmental correction
|
||||
MQ309.readSensor(false, correctionFactor2); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ309.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
||||
|
@ -79,6 +79,7 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ4.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
|
||||
/*
|
||||
Exponential regression:
|
||||
@ -90,19 +91,19 @@ void loop() {
|
||||
smoke | 30000000 | -8.308
|
||||
*/
|
||||
MQ4.setA(3811.9); MQ4.setB(-3.113); // Configure the equation to to calculate CH4 concentration
|
||||
float LPG = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float LPG = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ4.setA(1012.7); MQ4.setB(-2.786); // Configure the equation to to calculate CH4 concentration
|
||||
float CH4 = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CH4 = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ4.setA(200000000000000); MQ4.setB(-19.05); // Configure the equation to to calculate CH4 concentration
|
||||
float CO = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ4.setA(60000000000); MQ4.setB(-14.01); // Configure the equation to to calculate CH4 concentration
|
||||
float Alcohol = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Alcohol = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ4.setA(30000000); MQ4.setB(-8.308); // Configure the equation to to calculate CH4 concentration
|
||||
float Smoke = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Smoke = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
Serial.print("| "); Serial.print(LPG);
|
||||
Serial.print(" | "); Serial.print(CH4);
|
||||
|
@ -81,7 +81,8 @@ void loop() {
|
||||
|
||||
//https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
MQ4.setA(-0.318); MQ4.setB(1.133); // A -> Slope, B -> Intersect with X - Axis
|
||||
float LPG = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
float LPG = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
// exposure to 2000 ppm of LPG gas is immediately dangerous to life and health. In this section
|
||||
if(LPG>=2000) Serial.println("Warning - Very high concentrations detected!");
|
||||
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ4.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ4.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ5.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ5.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ5.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ5.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -87,7 +87,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ6.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ6.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ6.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ6.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -100,7 +100,8 @@ void loop() {
|
||||
// VH 5 Volts
|
||||
analogWrite(5, 255); // 255 is DC 5V output
|
||||
MQ7.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ7.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ7.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ7.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
||||
@ -112,7 +113,8 @@ void loop() {
|
||||
// VH 1.4 Volts
|
||||
analogWrite(5, 20); // 255 is 100%, 20.4 is aprox 8% of Duty cycle for 90s
|
||||
MQ7.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ7.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor2 = 0; // Optional environmental correction
|
||||
MQ7.readSensor(false, correctionFactor2); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ7.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
||||
|
@ -88,7 +88,8 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ8.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ8.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ8.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ8.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -78,6 +78,7 @@ void setup() {
|
||||
|
||||
void loop() {
|
||||
MQ9.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
/*
|
||||
Exponential regression:
|
||||
GAS | a | b
|
||||
@ -87,13 +88,13 @@ void loop() {
|
||||
*/
|
||||
|
||||
MQ9.setA(1000.5); MQ9.setB(-2.186); // Configure the equation to to calculate LPG concentration
|
||||
float LPG = MQ9.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float LPG = MQ9.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ9.setA(4269.6); MQ9.setB(-2.648); // Configure the equation to to calculate LPG concentration
|
||||
float CH4 = MQ9.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CH4 = MQ9.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ9.setA(599.65); MQ9.setB(-2.244); // Configure the equation to to calculate LPG concentration
|
||||
float CO = MQ9.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO = MQ9.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
Serial.print("| "); Serial.print(LPG);
|
||||
Serial.print(" | "); Serial.print(CH4);
|
||||
|
@ -115,7 +115,8 @@ void loop() {
|
||||
digitalWrite(PreaheatControlPin14, LOW);
|
||||
|
||||
MQ9.update(); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ9.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ9.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ9.serialDebug(); // Will print the table on the serial port
|
||||
|
||||
}
|
@ -201,15 +201,16 @@ void readAllSensors()
|
||||
MQ7.update();
|
||||
MQ8.update();
|
||||
MQ9.update();
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
//Read the sensor and print in serial port
|
||||
float MQ2Lecture = MQ2.readSensor();
|
||||
float MQ3Lecture = MQ3.readSensor();
|
||||
float MQ4Lecture = MQ4.readSensor();
|
||||
float MQ5Lecture = MQ5.readSensor();
|
||||
float MQ6Lecture = MQ6.readSensor();
|
||||
float MQ7Lecture = MQ7.readSensor();
|
||||
float MQ8Lecture = MQ8.readSensor();
|
||||
float MQ9Lecture = MQ9.readSensor();
|
||||
float MQ2Lecture = MQ2.readSensor(false, correctionFactor);
|
||||
float MQ3Lecture = MQ3.readSensor(false, correctionFactor);
|
||||
float MQ4Lecture = MQ4.readSensor(false, correctionFactor);
|
||||
float MQ5Lecture = MQ5.readSensor(false, correctionFactor);
|
||||
float MQ6Lecture = MQ6.readSensor(false, correctionFactor);
|
||||
float MQ7Lecture = MQ7.readSensor(false, correctionFactor);
|
||||
float MQ8Lecture = MQ8.readSensor(false, correctionFactor);
|
||||
float MQ9Lecture = MQ9.readSensor(false, correctionFactor);
|
||||
|
||||
Serial.print("| "); Serial.print(MQ2Lecture);
|
||||
Serial.print(" | "); Serial.print(MQ3Lecture);
|
||||
|
@ -74,24 +74,25 @@ void loop() {
|
||||
short adc0 = ads.readADC_SingleEnded(0);
|
||||
float voltios = (adc0 * factorEscala)/1000.0;
|
||||
MQ135.externalADCUpdate(voltios); // Update data, the arduino will read the voltage from the analog pin
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
|
||||
MQ135.setA(605.18); MQ135.setB(-3.937); // Configure the equation to calculate CO concentration value
|
||||
float CO = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(77.255); MQ135.setB(-3.18); //Configure the equation to calculate Alcohol concentration value
|
||||
float Alcohol = MQ135.readSensor(); // SSensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Alcohol = MQ135.readSensor(false, correctionFactor); // SSensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(110.47); MQ135.setB(-2.862); // Configure the equation to calculate CO2 concentration value
|
||||
float CO2 = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float CO2 = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(44.947); MQ135.setB(-3.445); // Configure the equation to calculate Toluen concentration value
|
||||
float Toluen = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Toluen = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(102.2 ); MQ135.setB(-2.473); // Configure the equation to calculate NH4 concentration value
|
||||
float NH4 = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float NH4 = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
|
||||
MQ135.setA(34.668); MQ135.setB(-3.369); // Configure the equation to calculate Aceton concentration value
|
||||
float Aceton = MQ135.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float Aceton = MQ135.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
Serial.print("| "); Serial.print(CO);
|
||||
Serial.print(" | "); Serial.print(Alcohol);
|
||||
// Note: 200 Offset for CO2 source: https://github.com/miguel5612/MQSensorsLib/issues/29
|
||||
|
@ -27,11 +27,11 @@
|
||||
#define Pin7 (A7) //Analog input 7 of your arduino
|
||||
#define Pin8 (A8) //Analog input 8 of your arduino
|
||||
#define Pin9 (A9) //Analog input 9 of your arduino
|
||||
#define Pin10 (A10) //Analog input 9 of your arduino
|
||||
#define Pin11 (A11) //Analog input 9 of your arduino
|
||||
#define Pin12 (A12) //Analog input 9 of your arduino
|
||||
#define Pin13 (A13) //Analog input 9 of your arduino
|
||||
#define Pin14 (A14) //Analog input 9 of your arduino
|
||||
#define Pin10 (A10) //Analog input 10 of your arduino
|
||||
#define Pin11 (A11) //Analog input 11 of your arduino
|
||||
#define Pin12 (A12) //Analog input 12 of your arduino
|
||||
#define Pin13 (A13) //Analog input 13 of your arduino
|
||||
#define Pin14 (A14) //Analog input 14 of your arduino
|
||||
#define PWMPin (5) // Pin connected to mosfet
|
||||
/***********************Software Related Macros************************************/
|
||||
#define RatioMQ2CleanAir (9.83) //RS / R0 = 9.83 ppm
|
||||
@ -237,15 +237,25 @@ test(MQ303A_Ethanol)
|
||||
{
|
||||
MQ303A.setRegressionMethod(1); //_PPM = a*ratio^b
|
||||
MQ303A.setA(3.4916); MQ303A.setB(-2.432); // Configure the equation to to calculate Ethanol concentration
|
||||
MQ303A.init();
|
||||
MQ303A.init();
|
||||
MQ303A.setR0(10);
|
||||
|
||||
|
||||
int ppmExp=944;
|
||||
int PPM = MQ303A.setRsR0RatioGetPPM(0.1); // Send and Rs/R0 and return PPM (Using datasheet)
|
||||
|
||||
|
||||
assertEqual(PPM,ppmExp);
|
||||
}
|
||||
|
||||
test(MQ303A_VoltResolution)
|
||||
{
|
||||
float vRes = 4.7;
|
||||
MQ303A.setVoltResolution(vRes);
|
||||
MQ303A.setADC(100); // provide dummy ADC value
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ303A.readSensor(true, correctionFactor); // dummy read for MQ303A
|
||||
assertEqualFloat(MQ303A.getVoltResolution(), vRes);
|
||||
}
|
||||
|
||||
test(MQ309A_CO)
|
||||
{
|
||||
MQ309A.setRegressionMethod(1); //_PPM = a*ratio^b
|
||||
|
@ -99,7 +99,8 @@ void setup() {
|
||||
void loop() {
|
||||
int yourA2DValue = random(0, 1024); // 10-bit emulation
|
||||
MQ3.setADC(yourA2DValue); // Update data, the arduino will read the voltage from the analog pin
|
||||
MQ3.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
MQ3.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
MQ3.serialDebug(); // Will print the table on the serial port
|
||||
delay(500); //Sampling frequency
|
||||
}
|
@ -88,7 +88,8 @@ void setup() {
|
||||
//Read the sensor and print in serial port
|
||||
//Lecture will be saved in lecture variable
|
||||
MQ4.update();
|
||||
float smokePPM = MQ4.readSensor(); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
float correctionFactor = 0; // Optional environmental correction
|
||||
float smokePPM = MQ4.readSensor(false, correctionFactor); // Sensor will read PPM concentration using the model, a and b values set previously or from the setup
|
||||
if(smokePPM > 1000) {Serial.println("Warning: High concentrations of smoke detected");}
|
||||
MQ4.serialDebug(); // Will print the table on the serial port
|
||||
delay(400);
|
||||
|
29
keywords.txt
Normal file
29
keywords.txt
Normal file
@ -0,0 +1,29 @@
|
||||
MQUnifiedsensor KEYWORD1
|
||||
init KEYWORD2
|
||||
update KEYWORD2
|
||||
externalADCUpdate KEYWORD2
|
||||
setR0 KEYWORD2
|
||||
setRL KEYWORD2
|
||||
setA KEYWORD2
|
||||
setB KEYWORD2
|
||||
setRegressionMethod KEYWORD2
|
||||
setVoltResolution KEYWORD2
|
||||
setVCC KEYWORD2
|
||||
setPin KEYWORD2
|
||||
setADC KEYWORD2
|
||||
serialDebug KEYWORD2
|
||||
calibrate KEYWORD2
|
||||
readSensor KEYWORD2
|
||||
readSensorR0Rs KEYWORD2
|
||||
validateEcuation KEYWORD2
|
||||
getVoltage KEYWORD2
|
||||
setRsR0RatioGetPPM KEYWORD2
|
||||
getRS KEYWORD2
|
||||
stringTofloat KEYWORD2
|
||||
getA KEYWORD2
|
||||
getB KEYWORD2
|
||||
getR0 KEYWORD2
|
||||
getRL KEYWORD2
|
||||
getVoltResolution KEYWORD2
|
||||
getVCC KEYWORD2
|
||||
getRegressionMethod KEYWORD2
|
@ -1,5 +1,5 @@
|
||||
name=MQUnifiedsensor
|
||||
version=3.0.0
|
||||
version=3.0.5
|
||||
author= Miguel Califa <miguelangel5612@gmail.com>, Yersson Carrillo<miguelangel5612@gmail.com>, Ghiordy Contreras<miguelangel5612@gmail.com>
|
||||
maintainer= Miguel Califa <miguelangel5612@gmail.com>
|
||||
sentence= This library allows you to read the MQ sensors very easily.
|
||||
|
@ -1,4 +1,6 @@
|
||||
#include "MQUnifiedsensor.h"
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#define retries 2
|
||||
#define retry_interval 20
|
||||
@ -10,6 +12,7 @@ MQUnifiedsensor::MQUnifiedsensor(String Placa, float Voltage_Resolution, int ADC
|
||||
//this->_type = type; //MQ-2, MQ-3 ... MQ-309A
|
||||
//this->_placa = Placa;
|
||||
this-> _VOLT_RESOLUTION = Voltage_Resolution;
|
||||
this-> _VCC = Voltage_Resolution;
|
||||
this-> _ADC_Bit_Resolution = ADC_Bit_Resolution;
|
||||
}
|
||||
MQUnifiedsensor::MQUnifiedsensor(String Placa, String type) {
|
||||
@ -20,11 +23,39 @@ void MQUnifiedsensor::init()
|
||||
{
|
||||
pinMode(_pin, INPUT);
|
||||
}
|
||||
static inline double safePow(double base, double exp){
|
||||
if(exp == 0.0) return 1.0;
|
||||
if(exp == 1.0) return base;
|
||||
if(exp == 2.0) return base * base;
|
||||
return pow(base, exp);
|
||||
}
|
||||
static inline bool willOverflow(double log_ppm){
|
||||
static const double maxLog = log10((double)FLT_MAX);
|
||||
static const double minLog = log10((double)FLT_MIN);
|
||||
return (log_ppm > maxLog || log_ppm < minLog);
|
||||
}
|
||||
|
||||
void MQUnifiedsensor::setA(float a) {
|
||||
this->_a = a;
|
||||
if(isinf(a) || isnan(a)) {
|
||||
this->_a = 0;
|
||||
} else if(a > MQ_MAX_A) {
|
||||
this->_a = MQ_MAX_A;
|
||||
} else if(a < -MQ_MAX_A) {
|
||||
this->_a = -MQ_MAX_A;
|
||||
} else {
|
||||
this->_a = a;
|
||||
}
|
||||
}
|
||||
void MQUnifiedsensor::setB(float b) {
|
||||
this->_b = b;
|
||||
if(isinf(b) || isnan(b)) {
|
||||
this->_b = 0;
|
||||
} else if(b > MQ_MAX_B) {
|
||||
this->_b = MQ_MAX_B;
|
||||
} else if(b < -MQ_MAX_B) {
|
||||
this->_b = -MQ_MAX_B;
|
||||
} else {
|
||||
this->_b = b;
|
||||
}
|
||||
}
|
||||
void MQUnifiedsensor::setR0(float R0) {
|
||||
this->_R0 = R0;
|
||||
@ -41,6 +72,10 @@ void MQUnifiedsensor::setVoltResolution(float voltage_resolution)
|
||||
{
|
||||
_VOLT_RESOLUTION = voltage_resolution;
|
||||
}
|
||||
void MQUnifiedsensor::setVCC(float vcc)
|
||||
{
|
||||
_VCC = vcc;
|
||||
}
|
||||
void MQUnifiedsensor::setPin(int pin) {
|
||||
this->_pin = pin;
|
||||
}
|
||||
@ -59,6 +94,10 @@ float MQUnifiedsensor::getVoltResolution()
|
||||
{
|
||||
return _VOLT_RESOLUTION;
|
||||
}
|
||||
float MQUnifiedsensor::getVCC()
|
||||
{
|
||||
return _VCC;
|
||||
}
|
||||
String MQUnifiedsensor::getRegressionMethod()
|
||||
{
|
||||
if(_regressionMethod == 1) return "Exponential";
|
||||
@ -85,7 +124,8 @@ void MQUnifiedsensor::serialDebug(bool onSetup)
|
||||
Serial.println("Contributors: Andres A. Martinez - Juan A. Rodríguez - Mario A. Rodríguez O ");
|
||||
|
||||
Serial.print("Sensor: "); Serial.println(_type);
|
||||
Serial.print("Supply voltage: "); Serial.print(_VOLT_RESOLUTION); Serial.println(" VDC");
|
||||
Serial.print("ADC voltage: "); Serial.print(_VOLT_RESOLUTION); Serial.println(" VDC");
|
||||
Serial.print("Sensor supply (VCC): "); Serial.print(_VCC); Serial.println(" VDC");
|
||||
Serial.print("ADC Resolution: "); Serial.print(_ADC_Bit_Resolution); Serial.println(" Bits");
|
||||
Serial.print("R0: "); Serial.print(_R0); Serial.println(" KΩ");
|
||||
Serial.print("RL: "); Serial.print(_RL); Serial.println(" KΩ");
|
||||
@ -106,7 +146,7 @@ void MQUnifiedsensor::serialDebug(bool onSetup)
|
||||
else
|
||||
{
|
||||
Serial.print("|"); Serial.print(_adc); Serial.print("| v = ADC*"); Serial.print(_VOLT_RESOLUTION); Serial.print("/"); Serial.print((pow(2, _ADC_Bit_Resolution)) - 1); Serial.print(" | "); Serial.print(_sensor_volt);
|
||||
Serial.print(" | RS = ((" ); Serial.print(_VOLT_RESOLUTION ); Serial.print("*RL)/Voltage) - RL| "); Serial.print(_RS_Calc); Serial.print(" | Ratio = RS/R0| ");
|
||||
Serial.print(" | RS = ((" ); Serial.print(_VCC ); Serial.print("*RL)/Voltage) - RL| "); Serial.print(_RS_Calc); Serial.print(" | Ratio = RS/R0| ");
|
||||
Serial.print(_ratio); Serial.print( " | ");
|
||||
if(_regressionMethod == 1) Serial.print("ratio*a + b");
|
||||
else Serial.print("pow(10, (log10(ratio)-b)/a)");
|
||||
@ -124,62 +164,86 @@ void MQUnifiedsensor::externalADCUpdate(float volt)
|
||||
}
|
||||
float MQUnifiedsensor::validateEcuation(float ratioInput)
|
||||
{
|
||||
//Serial.print("Ratio input: "); Serial.println(ratioInput);
|
||||
//Serial.print("a: "); Serial.println(_a);
|
||||
//Serial.print("b: "); Serial.println(_b);
|
||||
//Usage of this function: Unit test on ALgorithmTester example;
|
||||
if(_regressionMethod == 1) _PPM= _a*pow(ratioInput, _b);
|
||||
else
|
||||
{
|
||||
// https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
double ppm_log = (log10(ratioInput)-_b)/_a; //Get ppm value in linear scale according to the the ratio value
|
||||
_PPM = pow(10, ppm_log); //Convert ppm value to log scale
|
||||
double ppm;
|
||||
if(_regressionMethod == 1){
|
||||
if(ratioInput <= 0 || _a == 0) return 0;
|
||||
double logppm = log10((double)_a) + (double)_b * log10((double)ratioInput);
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
//Serial.println("Regression Method: "); Serial.println(_regressionMethod);
|
||||
//Serial.println("Result: "); Serial.println(_PPM);
|
||||
return _PPM;
|
||||
else
|
||||
{
|
||||
if(ratioInput <= 0 || _a == 0) return 0;
|
||||
double logppm = (log10((double)ratioInput)-(double)_b)/(double)_a;
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
if(isinf(ppm) || isnan(ppm)) ppm = FLT_MAX;
|
||||
_PPM = (float)ppm;
|
||||
return _PPM;
|
||||
}
|
||||
float MQUnifiedsensor::readSensor(bool isMQ303A, float correctionFactor, bool injected)
|
||||
{
|
||||
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
|
||||
float voltRes = _VOLT_RESOLUTION; // preserve global resolution
|
||||
if(isMQ303A) {
|
||||
_VOLT_RESOLUTION = _VOLT_RESOLUTION - 0.45; //Calculations for RS using mq303a sensor look wrong #42
|
||||
voltRes = voltRes - 0.45; //Calculations for RS using mq303a sensor look wrong #42
|
||||
}
|
||||
_RS_Calc = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
_RS_Calc = ((_VCC*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
if(_RS_Calc < 0) _RS_Calc = 0; //No negative values accepted.
|
||||
if(!injected) _ratio = _RS_Calc / this->_R0; // Get ratio RS_gas/RS_air
|
||||
_ratio += correctionFactor;
|
||||
if(_ratio <= 0) _ratio = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
if(_regressionMethod == 1) _PPM= _a*pow(_ratio, _b); // <- Source excel analysis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents
|
||||
else
|
||||
{
|
||||
// https://jayconsystems.com/blog/understanding-a-gas-sensor <- Source of linear equation
|
||||
double ppm_log = (log10(_ratio)-_b)/_a; //Get ppm value in linear scale according to the the ratio value
|
||||
_PPM = pow(10, ppm_log); //Convert ppm value to log scale
|
||||
double ppm;
|
||||
if(_regressionMethod == 1){
|
||||
if(_ratio <= 0 || _a == 0) return 0;
|
||||
double logppm = log10((double)_a) + (double)_b * log10((double)_ratio);
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
if(_PPM < 0) _PPM = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
else
|
||||
{
|
||||
if(_ratio <= 0 || _a == 0) return 0;
|
||||
double logppm = (log10((double)_ratio)-(double)_b)/(double)_a;
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
if(ppm < 0) ppm = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
if(isinf(ppm) || isnan(ppm)) ppm = FLT_MAX;
|
||||
_PPM = (float)ppm;
|
||||
//if(_PPM > 10000) _PPM = 99999999; //No negative values accepted or upper datasheet recommendation.
|
||||
return _PPM;
|
||||
}
|
||||
float MQUnifiedsensor::readSensorR0Rs()
|
||||
float MQUnifiedsensor::readSensorR0Rs(float correctionFactor)
|
||||
{
|
||||
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
_RS_Calc = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
_RS_Calc = ((_VCC*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
if(_RS_Calc < 0) _RS_Calc = 0; //No negative values accepted.
|
||||
_ratio = this->_R0/_RS_Calc; // Get ratio RS_air/RS_gas <- INVERTED for MQ-131 issue 28 https://github.com/miguel5612/MQSensorsLib/issues/28
|
||||
_ratio += correctionFactor;
|
||||
if(_ratio <= 0) _ratio = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
if(_regressionMethod == 1) _PPM= _a*pow(_ratio, _b); // <- Source excel analysis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents
|
||||
else
|
||||
{
|
||||
// https://jayconsystems.com/blog/understanding-a-gas-sensor <- Source of linear equation
|
||||
double ppm_log = (log10(_ratio)-_b)/_a; //Get ppm value in linear scale according to the the ratio value
|
||||
_PPM = pow(10, ppm_log); //Convert ppm value to log scale
|
||||
double ppm;
|
||||
if(_regressionMethod == 1){
|
||||
if(_ratio <= 0 || _a == 0) return 0;
|
||||
double logppm = log10((double)_a) + (double)_b * log10((double)_ratio);
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
if(_PPM < 0) _PPM = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
else
|
||||
{
|
||||
if(_ratio <= 0 || _a == 0) return 0;
|
||||
double logppm = (log10((double)_ratio)-(double)_b)/(double)_a;
|
||||
if(willOverflow(logppm)) ppm = (logppm > 0) ? FLT_MAX : 0.0;
|
||||
else ppm = safePow(10.0, logppm);
|
||||
}
|
||||
if(ppm < 0) ppm = 0; //No negative values accepted or upper datasheet recommendation.
|
||||
if(isinf(ppm) || isnan(ppm)) ppm = FLT_MAX;
|
||||
_PPM = (float)ppm;
|
||||
//if(_PPM > 10000) _PPM = 99999999; //No negative values accepted or upper datasheet recommendation.
|
||||
return _PPM;
|
||||
}
|
||||
float MQUnifiedsensor::calibrate(float ratioInCleanAir) {
|
||||
float MQUnifiedsensor::calibrate(float ratioInCleanAir, float correctionFactor) {
|
||||
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
/*
|
||||
V = I x R
|
||||
@ -194,9 +258,10 @@ float MQUnifiedsensor::calibrate(float ratioInCleanAir) {
|
||||
*/
|
||||
float RS_air; //Define variable for sensor resistance
|
||||
float R0; //Define variable for R0
|
||||
RS_air = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Calculate RS in fresh air
|
||||
RS_air = ((_VCC*_RL)/_sensor_volt)-_RL; //Calculate RS in fresh air
|
||||
if(RS_air < 0) RS_air = 0; //No negative values accepted.
|
||||
R0 = RS_air/ratioInCleanAir; //Calculate R0
|
||||
R0 = RS_air/ratioInCleanAir; //Calculate R0
|
||||
R0 += correctionFactor;
|
||||
if(R0 < 0) R0 = 0; //No negative values accepted.
|
||||
return R0;
|
||||
}
|
||||
@ -231,7 +296,7 @@ float MQUnifiedsensor:: setRsR0RatioGetPPM(float value)
|
||||
float MQUnifiedsensor::getRS()
|
||||
{
|
||||
//More explained in: https://jayconsystems.com/blog/understanding-a-gas-sensor
|
||||
_RS_Calc = ((_VOLT_RESOLUTION*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
_RS_Calc = ((_VCC*_RL)/_sensor_volt)-_RL; //Get value of RS in a gas
|
||||
if(_RS_Calc < 0) _RS_Calc = 0; //No negative values accepted.
|
||||
return _RS_Calc;
|
||||
}
|
||||
|
@ -3,6 +3,12 @@
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <stdint.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
// Maximum coefficients allowed for the regression model
|
||||
#define MQ_MAX_A 1e30
|
||||
#define MQ_MAX_B 100.0
|
||||
|
||||
/***********************Software Related Macros************************************/
|
||||
|
||||
@ -22,14 +28,15 @@ class MQUnifiedsensor
|
||||
void setB(float b);
|
||||
void setRegressionMethod(int regressionMethod);
|
||||
void setVoltResolution(float voltage_resolution = 5);
|
||||
void setVCC(float vcc = 5);
|
||||
void setPin(int pin = 1);
|
||||
void serialDebug(bool onSetup = false); //Show on serial port information about sensor
|
||||
void setADC(int value); //For external ADC Usage
|
||||
|
||||
//user functions
|
||||
float calibrate(float ratioInCleanAir);
|
||||
float calibrate(float ratioInCleanAir, float correctionFactor = 0.0);
|
||||
float readSensor(bool isMQ303A = false, float correctionFactor = 0.0, bool injected=false);
|
||||
float readSensorR0Rs();
|
||||
float readSensorR0Rs(float correctionFactor = 0.0);
|
||||
float validateEcuation(float ratioInput = 0);
|
||||
|
||||
//get function for info
|
||||
@ -38,6 +45,7 @@ class MQUnifiedsensor
|
||||
float getR0();
|
||||
float getRL();
|
||||
float getVoltResolution();
|
||||
float getVCC();
|
||||
String getRegressionMethod();
|
||||
float getVoltage(bool read = true, bool injected = false, int value = 0);
|
||||
float stringTofloat(String & str);
|
||||
@ -51,6 +59,7 @@ class MQUnifiedsensor
|
||||
byte _pin = 1;
|
||||
byte _firstFlag = false;
|
||||
float _VOLT_RESOLUTION = 5.0; // if 3.3v use 3.3
|
||||
float _VCC = 5.0; // Sensor supply voltage
|
||||
float _RL = 10; //Value in KiloOhms
|
||||
byte _ADC_Bit_Resolution = 10;
|
||||
byte _regressionMethod = 1; // 1 -> Exponential || 2 -> Linear
|
||||
|
Reference in New Issue
Block a user