l3gd20: Add support for I2C connections

The existing driver only supported IIO.  This change adds support for
controlling the device via an I2C connection. In addition, there is a
new C++ example for it (l3gd20-i2c.cxx).

Note: Only basic functionality is supported, though a full register
map and access functions are available to fill in any desired
functionality.

Note, that some methods are only usable with specific connection
types.  See the documentation.

Signed-off-by: Jon Trulson <jtrulson@ics.com>
This commit is contained in:
Jon Trulson 2016-08-09 15:54:14 -06:00
parent 4faa71d239
commit 06ecae7212
4 changed files with 882 additions and 13 deletions

View File

@ -267,6 +267,7 @@ add_example (ds18b20)
add_example (bmp280)
add_example (bno055)
add_example (l3gd20)
add_example (l3gd20-i2c)
add_example (bmx055)
add_example (ms5611)

123
examples/c++/l3gd20-i2c.cxx Normal file
View File

@ -0,0 +1,123 @@
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <iomanip>
#include <math.h>
#include <signal.h>
#include "l3gd20.hpp"
using namespace std;
int shouldRun = true;
void sig_handler(int signo)
{
if (signo == SIGINT)
shouldRun = false;
}
float rad2deg(float x)
{
return x * (180.0 / M_PI);
}
int main(int argc, char **argv)
{
signal(SIGINT, sig_handler);
//! [Interesting]
// Instantiate an L3GD20 using default parameters
upm::L3GD20 *sensor = new upm::L3GD20(L3GD20_DEFAULT_I2C_BUS,
L3GD20_DEFAULT_I2C_ADDR);
// set some parameters (these are already the defaults, but are
// provided here as an example)
// 250 deg/s sensitivity
sensor->setRange(sensor->FS_250);
// Set ODR to 95Hz, 25Hz cut-off
sensor->setODR(sensor->ODR_CUTOFF_95_25);
// If you already have calibration data, you can specify it here
// sensor->loadCalibratedData(-0.0296269637, -0.0080939643, -0.0077121737);
// now output data every 100 milliseconds
while (shouldRun)
{
float x, y, z;
sensor->update();
cout << "Calibrated: " << sensor->getCalibratedStatus() << endl;
// output is in radians/s
sensor->getGyroscope(&x, &y, &z);
cout << fixed << setprecision(1)
<< "Gyroscope x: " << x
<< " y: " << y
<< " z: " << z
<< " radians"
<< endl;
// same data converted to degrees/s
cout << "Gyroscope x: " << rad2deg(x)
<< " y: " << rad2deg(y)
<< " z: " << rad2deg(z)
<< " degrees"
<< endl;
// we show both C and F for temperature
cout << "Compensation Temperature: " << sensor->getTemperature(false)
<< " C / " << sensor->getTemperature(true) << " F"
<< endl;
cout << endl;
usleep(100000);
}
// dump the calibration values if we managed to calibrate
if (sensor->getCalibratedStatus())
{
float calX, calY, calZ;
sensor->getCalibratedData(&calX, &calY, &calZ);
cout << setprecision(10)
<< "Calibration values x: " << calX
<< " y: " << calY
<< " z: " << calZ
<< endl;
}
cout << "Exiting..." << endl;
delete sensor;
//! [Interesting]
return 0;
}

View File

@ -1,5 +1,6 @@
/*
* Author: Lay, Kuan Loon <kuan.loon.lay@intel.com>
* Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
@ -38,8 +39,15 @@
#define GYRO_DENOISE_NUM_FIELDS 3
using namespace upm;
using namespace std;
L3GD20::L3GD20(int device)
static float c2f(float c)
{
return (c * (9.0 / 5.0) + 32.0);
}
L3GD20::L3GD20(int device) :
m_i2c(0)
{
float gyro_scale;
char trigger[64];
@ -49,6 +57,7 @@ L3GD20::L3GD20(int device)
": mraa_iio_init() failed, invalid device?");
return;
}
m_scale = 1;
m_iio_device_num = device;
sprintf(trigger, "hrtimer-l3gd20-hr-dev%d", device);
@ -82,6 +91,72 @@ L3GD20::L3GD20(int device)
m_filter.idx = 0;
}
L3GD20::L3GD20(int bus, int addr)
{
m_i2c = new mraa::I2c(bus);
if (m_i2c->address(addr) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": I2c.address() failed");
}
m_scale = 1.0;
m_iio_device_num = 0;
m_gyrScale = 1.0;
m_gyrX = 0.0;
m_gyrY = 0.0;
m_gyrZ = 0.0;
m_temperature = 0.0;
m_mount_matrix_exist = false;
m_event_count = 0;
// initial calibrate data
initCalibrate();
// initial denoise data
m_filter.buff =
(float*) calloc(GYRO_DENOISE_MAX_SAMPLES,
sizeof(float) * GYRO_DENOISE_NUM_FIELDS);
if (m_filter.buff == NULL)
{
throw std::bad_alloc();
return;
}
m_filter.sample_size = GYRO_DENOISE_MAX_SAMPLES;
m_filter.count = 0;
m_filter.idx = 0;
// check ChipID
uint8_t cid = getChipID();
if (cid != L3GD20_DEFAULT_CHIP_ID)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": invalid Chip ID: expected "
+ std::to_string(L3GD20_DEFAULT_CHIP_ID)
+ ", got "
+ std::to_string(int(cid)));
return;
}
// set a normal power mode (with all axes enabled)
setPowerMode(POWER_NORMAL);
// enable block update mode
enableBDU(true);
// Set range to 250 degrees/sec/
setRange(FS_250);
// Set ODR to 95Hz, 25Hz cut-off
setODR(ODR_CUTOFF_95_25);
}
L3GD20::~L3GD20()
{
if (m_filter.buff) {
@ -92,6 +167,180 @@ L3GD20::~L3GD20()
mraa_iio_close(m_iio);
}
uint8_t L3GD20::readReg(uint8_t reg)
{
return m_i2c->readReg(reg);
}
int L3GD20::readRegs(uint8_t reg, uint8_t *buffer, int len)
{
// For multi-byte reads, the reg must have the MSb set
return m_i2c->readBytesReg(reg | 0x80, buffer, len);
}
void L3GD20::writeReg(uint8_t reg, uint8_t val)
{
if (m_i2c->writeReg(reg, val) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": I2c.writeReg() failed");
}
}
uint8_t L3GD20::getChipID()
{
return readReg(REG_WHO_AM_I);
}
void L3GD20::setPowerMode(POWER_MODES_T mode)
{
uint8_t reg = readReg(REG_CTRL_REG1);
// setting the power modes involves setting certain combinations of
// the PD, and the X, Y, and Zen bitfields.
switch(mode)
{
case POWER_DOWN:
// clear PD
reg &= ~(CTRL_REG1_PD);
break;
case POWER_SLEEP:
// set PD, clear X, Y, and Zen.
reg |= CTRL_REG1_PD;
reg &= ~(CTRL_REG1_YEN | CTRL_REG1_XEN | CTRL_REG1_ZEN);
break;
case POWER_NORMAL:
// set PD, X, Y, and Zen.
reg |= (CTRL_REG1_PD | CTRL_REG1_YEN | CTRL_REG1_XEN | CTRL_REG1_ZEN);
break;
}
writeReg(REG_CTRL_REG1, reg);
}
void L3GD20::setRange(FS_T range)
{
switch(range)
{
case FS_250:
m_gyrScale = 8.75; // milli-degrees
break;
case FS_500:
m_gyrScale = 17.50;
break;
case FS_2000:
m_gyrScale = 70.0;
break;
}
uint8_t reg = readReg(REG_CTRL_REG4) & ~(_CTRL_REG4_RESERVED_BITS);
// mask off current FS
reg &= ~(_CTRL_REG4_FS_MASK << _CTRL_REG4_FS_SHIFT);
// add our new FS
reg |= (range << _CTRL_REG4_FS_SHIFT);
writeReg(REG_CTRL_REG4, reg);
}
void L3GD20::enableBDU(bool enable)
{
uint8_t reg = readReg(REG_CTRL_REG4) & ~(_CTRL_REG4_RESERVED_BITS);
if (enable)
reg |= CTRL_REG4_BDU;
else
reg &= ~CTRL_REG4_BDU;
writeReg(REG_CTRL_REG4, reg);
}
void L3GD20::getGyroscope(float *x, float *y, float *z)
{
if (x)
*x = m_gyrX;
if (y)
*y = m_gyrY;
if (z)
*z = m_gyrZ;
}
void L3GD20::update()
{
int bufLen = 6;
uint8_t buf[bufLen];
if (readRegs(REG_OUT_X_L, buf, bufLen) != bufLen)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": readRegs() failed to read "
+ std::to_string(bufLen)
+ " bytes");
}
int16_t val;
// The calibration and denoise algorithms depend on the use of
// radians rather than degrees, so we convert to radians here.
val = int16_t(buf[1] << 8 | buf[0]);
m_gyrX = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
m_gyrX = m_gyrX - m_cal_data.bias_x;
// y
val = int16_t(buf[3] << 8 | buf[2]);
m_gyrY = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
m_gyrY = m_gyrY - m_cal_data.bias_y;
// z
val = int16_t(buf[5] << 8 | buf[4]);
m_gyrZ = ((float(val) * m_gyrScale) / 1000.0) * (M_PI/180.0);
m_gyrZ = m_gyrZ - m_cal_data.bias_z;
if (m_calibrated == false)
m_calibrated = gyroCollect(m_gyrX, m_gyrY, m_gyrZ);
if (m_event_count++ >= GYRO_MIN_SAMPLES)
{
gyroDenoiseMedian(&m_gyrX, &m_gyrY, &m_gyrZ);
clampGyroReadingsToZero(&m_gyrX, &m_gyrY, &m_gyrZ);
}
// get the temperature...
uint8_t temp = readReg(REG_OUT_TEMPERATURE);
m_temperature = (float)temp;
}
float L3GD20::getTemperature(bool fahrenheit)
{
if (fahrenheit)
return c2f(m_temperature);
else
return m_temperature;
}
void L3GD20::setODR(ODR_CUTOFF_T odr)
{
uint8_t reg = readReg(REG_CTRL_REG1);
reg &= ~(_CTRL_REG1_ODR_CUTOFF_MASK << _CTRL_REG1_ODR_CUTOFF_SHIFT);
reg |= (odr << _CTRL_REG1_ODR_CUTOFF_SHIFT);
writeReg(REG_CTRL_REG1, reg);
}
uint8_t L3GD20::getStatusBits()
{
return readReg(REG_STATUS_REG);
}
void
L3GD20::installISR(void (*isr)(char*), void* arg)
{

View File

@ -1,5 +1,6 @@
/*
* Author: Lay, Kuan Loon <kuan.loon.lay@intel.com>
* Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
@ -28,6 +29,12 @@
#include <string>
#include <mraa/iio.h>
#include <mraa/i2c.hpp>
#define L3GD20_DEFAULT_I2C_BUS 0
// if SDO tied to GND
#define L3GD20_DEFAULT_I2C_ADDR 0x6a
#define L3GD20_DEFAULT_CHIP_ID 0xd4
namespace upm
{
@ -47,9 +54,21 @@ namespace upm
*
* @brief L3GD20 Tri-axis Digital Gyroscope API
*
* The L3GD20 The L3GD20 is a low-power three-axis angular rate sensor.
* The L3GD20 The L3GD20 is a low-power three-axis angular rate
* sensor. This driver supports IIO and I2C modes. Some methods will
* only work in one mode or the other. See the documentation on the
* methods to determine whether a given method is operation in a given
* mode. Both the I2C and IIO mechanisms make use of the calibration and
* denoise algorithms.
*
* For I2C mode, not all capabilities of the device are supported, but
* a complete register map and low level read/write methods are
* provided to add any missing functionality.
*
* Example using IIO
* @snippet l3gd20.cxx Interesting
* Example using I2C
* @snippet l3gd20-i2c.cxx Interesting
*/
class L3GD20
@ -68,21 +87,458 @@ class L3GD20
unsigned int count;
unsigned int sample_size;
} filter_median_t;
// NOTE: Reserved registers must not be written into or permanent
// device damage can result. Reading from them may return
// indeterminate values. Registers containing reserved bitfields
// must be written as 0. Reading reserved bitfields may return
// indeterminate values.
/**
* L3GD20 Tri-axis Digital Gyroscope
* L3GD20 registers (i2c)
*/
typedef enum {
// 0x00-0x0e reserved
REG_WHO_AM_I = 0x0f,
// 0x10-0x1f reserved
REG_CTRL_REG1 = 0x20,
REG_CTRL_REG2 = 0x21,
REG_CTRL_REG3 = 0x22,
REG_CTRL_REG4 = 0x23,
REG_CTRL_REG5 = 0x24,
REG_REFERENCE = 0x25,
REG_OUT_TEMPERATURE = 0x26,
REG_STATUS_REG = 0x27,
// output registers (also for FIFO output)
REG_OUT_X_L = 0x28,
REG_OUT_X_H = 0x29,
REG_OUT_Y_L = 0x2a,
REG_OUT_Y_H = 0x2b,
REG_OUT_Z_L = 0x2c,
REG_OUT_Z_H = 0x2d,
REG_FIFO_CTRL_REG = 0x2e,
REG_FIFO_SRC_REG = 0x2f,
REG_INT1_CFG = 0x30,
REG_INT1_SRC = 0x31,
REG_INT1_TSH_XH = 0x32,
REG_INT1_TSH_XL = 0x33,
REG_INT1_TSH_YH = 0x34,
REG_INT1_TSH_YL = 0x35,
REG_INT1_TSH_ZH = 0x36,
REG_INT1_TSH_ZL = 0x37,
REG_INT1_DURATION = 0x38
} L3GD20_REGS_T;
/**
* CTRL_REG1 bits
*/
typedef enum {
CTRL_REG1_YEN = 0x01,
CTRL_REG1_XEN = 0x02,
CTRL_REG1_ZEN = 0x04,
CTRL_REG1_PD = 0x08,
CTRL_REG1_BW0 = 0x10, // bandwidth
CTRL_REG1_BW1 = 0x20,
_CTRL_REG1_BW_MASK = 3,
_CTRL_REG1_BW_SHIFT = 4,
CTRL_REG1_DR0 = 0x40, // data rate
CTRL_REG1_DR1 = 0x80,
_CTRL_REG1_DR_MASK = 3,
_CTRL_REG1_DR_SHIFT = 6,
// together the BW and DR modes represent an output data rate
// (ODR) and a filter cut-off. So here, we will create a 'fake'
// bitfield that can be used directly with the ODR_CUTOFF enum
_CTRL_REG1_ODR_CUTOFF0 = 0x10,
_CTRL_REG1_ODR_CUTOFF1 = 0x20,
_CTRL_REG1_ODR_CUTOFF2 = 0x40,
_CTRL_REG1_ODR_CUTOFF3 = 0x80,
_CTRL_REG1_ODR_CUTOFF_MASK = 15,
_CTRL_REG1_ODR_CUTOFF_SHIFT = 4
} CTRL_REG1_BITS_T;
/**
* CTRL_REG1_ODR_CUTOFF values
*/
typedef enum {
ODR_CUTOFF_95_12_5 = 0, // ODR 95Hz, CO 12.5
ODR_CUTOFF_95_25 = 1, // ODR 95Hz, CO 25
// 2 and 3 same as 1
ODR_CUTOFF_190_12_5 = 4,
ODR_CUTOFF_190_25 = 5,
ODR_CUTOFF_190_50 = 6,
ODR_CUTOFF_190_70 = 7,
ODR_CUTOFF_380_20 = 8,
ODR_CUTOFF_380_25 = 9,
ODR_CUTOFF_380_50 = 10,
ODR_CUTOFF_380_100 = 11,
ODR_CUTOFF_760_30 = 12,
ODR_CUTOFF_760_35 = 13,
ODR_CUTOFF_760_50 = 14,
ODR_CUTOFF_760_100 = 15
} ODR_CUTOFF_T;
/**
* CTRL_REG1 power modes. Power is controlled via the PD, Zen,
* Yen, and Xen bitfields.
*/
typedef enum {
POWER_DOWN,
POWER_SLEEP,
POWER_NORMAL
} POWER_MODES_T;
/**
* CTRL_REG2 bits
*/
typedef enum {
_CTRL_REG2_RESERVED_BITS = 0x40 | 0x80,
CTRL_REG2_HPCF0 = 0x01, // highpass filter cutoff
CTRL_REG2_HPCF1 = 0x02,
CTRL_REG2_HPCF2 = 0x04,
CTRL_REG2_HPCF3 = 0x08,
_CTRL_REG2_HPCF_MASK = 15,
_CTRL_REG2_HPCF_SHIFT = 0,
CTRL_REG2_HPM0 = 0x10, // highpass filter mode
CTRL_REG2_HPM1 = 0x20,
_CTRL_REG2_HPM_MASK = 3,
_CTRL_REG2_HPM_SHIFT = 4
// 0x40-0x80 reserved
} CTRL_REG2_BITS_T;
/**
* CTRL_REG2_HPCF values (see table 26 in the datasheet)
*/
typedef enum {
HPCF_7_2 = 0, // 7.2Hz CO (w/ ODR@95Hz)
HPCF_3_5 = 1,
HPCF_1_8 = 2,
HPCF_0_9 = 3,
HPCF_0_45 = 4,
HPCF_0_18 = 5,
HPCF_0_09 = 6,
HPCF_0_045 = 7,
HPCF_0_018 = 8,
HPCF_0_009 = 9
} HPCF_T;
/**
* CTRL_REG2_HPM values
*/
typedef enum {
HPM_NORMAL_RESET_FILTER = 0,
HPM_REFERENCE_SIGNAL = 1,
HPM_NORMAL = 2,
HPM_AUTORESET_ON_INT = 3
} HPM_T;
/**
* CTRL_REG3 bits
*/
typedef enum {
CTRL_REG3_I2_EMPTY = 0x01,
CTRL_REG3_I2_ORUN = 0x02,
CTRL_REG3_I2_WTM = 0x04,
CTRL_REG3_I2_DRDY = 0x08,
CTRL_REG3_PP_OD = 0x10,
CTRL_REG3_H_LACTIVE = 0x20,
CTRL_REG3_I1_BOOT = 0x40,
CTRL_REG3_I1_INT1 = 0x80
} CTRL_REG3_BITS_T;
/**
* CTRL_REG4 bits
*/
typedef enum {
_CTRL_REG4_RESERVED_BITS = 0x02 | 0x04 | 0x08,
CTRL_REG4_SIM = 0x01, // SPI 3 or 4 wire
// 0x02-0x08 reserved
CTRL_REG4_FS0 = 0x10, // full scale select
CTRL_REG4_FS1 = 0x20,
_CTRL_REG4_FS_MASK = 3,
_CTRL_REG4_FS_SHIFT = 4,
CTRL_REG4_BLE = 0x40, // endian selection
CTRL_REG4_BDU = 0x80 // block updating
} CTRL_REG4_BITS_T;
/**
* CTRL_REG4_FS values
*/
typedef enum {
FS_250 = 0, // 250 deg/s
FS_500 = 1,
FS_2000 = 2
} FS_T;
/**
* CTRL_REG5 bits
*/
typedef enum {
_CTRL_REG5_RESERVED_BITS = 0x20,
CTRL_REG5_OUT_SEL0 = 0x01,
CTRL_REG5_OUT_SEL1 = 0x02,
_CTRL_REG5_OUT_SEL_MASK = 3,
_CTRL_REG5_OUT_SEL_SHIFT = 0,
CTRL_REG5_INT1_SEL0 = 0x04,
CTRL_REG5_INT1_SEL1 = 0x08,
_CTRL_REG5_INT1_SEL_MASK = 3,
_CTRL_REG5_INT1_SEL_SHIFT = 2,
CTRL_REG5_HPEN = 0x10,
// 0x20 reserved
CTRL_REG5_FIFO_EN = 0x40,
CTRL_REG5_BOOT = 0x80
} CTRL_REG5_BITS_T;
/**
* STATUS_REG bits
*/
typedef enum {
STATUS_REG_XDA = 0x01, // axis data avail
STATUS_REG_YDA = 0x02,
STATUS_REG_ZDA = 0x04,
STATUS_REG_ZYXDA = 0x08,
STATUS_REG_XOR = 0x10, // axis data overrun
STATUS_REG_YOR = 0x20,
STATUS_REG_ZOR = 0x40,
STATUS_REG_ZYXOR = 0x80
} STATUS_REG_BITS_T;
/**
* FIFO_CTRL_REG bits
*/
typedef enum {
FIFO_CTRL_REG_WTM0 = 0x01, // FIFO watermark
FIFO_CTRL_REG_WTM1 = 0x02,
FIFO_CTRL_REG_WTM2 = 0x04,
FIFO_CTRL_REG_WTM3 = 0x08,
FIFO_CTRL_REG_WTM4 = 0x10,
_FIFO_CTRL_REG_WTM_MASK = 31,
_FIFO_CTRL_REG_WTM_SHIFT = 0,
FIFO_CTRL_REG_FM0 = 0x20, // FIFO mode
FIFO_CTRL_REG_FM1 = 0x40,
FIFO_CTRL_REG_FM2 = 0x80,
_FIFO_CTRL_REG_FM_MASK = 7,
_FIFO_CTRL_REG_FM_SHIFT = 5
} FIFO_CTRL_REG_BITS_T;
/**
* FIFO_CTRL_REG_FM (FIFO mode) values
*/
typedef enum {
FIFO_MODE_BYPASS = 0,
FIFO_MODE_FIFO = 1,
FIFO_MODE_STREAM = 2,
FIFO_MODE_STREAM_TO_FIFO = 3,
FIFO_MODE_BYPASS_TO_STREAM = 4
} FIFO_MODE_T;
/**
* FIFO_SRC_REG bits
*/
typedef enum {
FIFO_SRC_REG_FSS0 = 0x01, // FIFO stored data level
FIFO_SRC_REG_FSS1 = 0x02,
FIFO_SRC_REG_FSS2 = 0x04,
FIFO_SRC_REG_FSS3 = 0x08,
FIFO_SRC_REG_FSS4 = 0x10,
_FIFO_SRC_REG_FSS_MASK = 31,
_FIFO_SRC_REG_FSS_SHIFT = 0,
FIFO_SRC_REG_EMPTY = 0x20,
FIFO_SRC_REG_OVRN = 0x40,
FIFO_SRC_REG_WTM = 0x80
} FIFO_SRC_BITS_T;
/**
* INT1_CFG bits
*/
typedef enum {
INT1_CFG_XLIE = 0x01, // low intr en
INT1_CFG_XHIE = 0x02, // high intr en
INT1_CFG_YLIE = 0x04,
INT1_CFG_YHIE = 0x08,
INT1_CFG_ZLIE = 0x10,
INT1_CFG_ZHIE = 0x20,
INT1_CFG_LIR = 0x40,
INT1_CFG_AND_OR = 0x80
} INT1_CFG_BITS_T;
/**
* INT1_SRC bits
*/
typedef enum {
_INT1_SRC_RESERVED_BITS = 0x80,
INT1_SRC_XL = 0x01, // X low intr
INT1_SRC_XH = 0x02, // X high intr
INT1_SRC_YL = 0x04,
INT1_SRC_YH = 0x08,
INT1_SRC_ZL = 0x10,
INT1_SRC_ZH = 0x20,
INT1_SRC_IA = 0x40 // intr active
// 0x80 reserved
} INT1_SRC_BITS_T;
/**
* INT1_DURATION bits
*/
typedef enum {
INT1_DURATION_D0 = 0x01,
INT1_DURATION_D1 = 0x02,
INT1_DURATION_D2 = 0x04,
INT1_DURATION_D3 = 0x08,
INT1_DURATION_D4 = 0x10,
INT1_DURATION_D5 = 0x20,
INT1_DURATION_D6 = 0x40,
INT1_DURATION_WAIT = 0x80
} INT1_DURATION_BITS_T;
/**
* L3GD20 Tri-axis Digital Gyroscope Contructor for IIO operation
*
* @param iio device number
*/
L3GD20(int device);
/**
* L3GD20 Tri-axis Digital Gyroscope Contructor for I2C operation
*
* @param bus i2c bus
* @param addr I2C address
*/
L3GD20(int bus, int addr);
/**
* L3GD20 destructor
*/
~L3GD20();
/**
* Return the chip ID. I2C only.
*
* @return The chip ID (L3GD20_DEFAULT_CHIP_ID).
*/
uint8_t getChipID();
/**
* Return gyroscope data in radians per second. update() must
* have been called prior to calling this method. I2C only.
*
* @param x Pointer to a floating point value that will have the
* current x component placed into it.
* @param y Pointer to a floating point value that will have the
* current y component placed into it.
* @param z Pointer to a floating point value that will have the
* current z component placed into it.
*/
void getGyroscope(float *x, float *y, float *z);
/**
* Set the power mode of the device. I2C only.
*
* @param power One of the POWER_MODES_T values.
*/
void setPowerMode(POWER_MODES_T mode);
/**
* Set the gyroscope detection scaling range. This device
* supports 250, 500 and 2000 degree/s ranges. I2C only.
*
* @param range One of the FS_T values.
*/
void setRange(FS_T range);
/**
* Update the internal stored values from sensor data. This
* method must be called before querying any data
* (getTemperature() and getGyroscope()). I2C only.
*/
void update();
/**
* Return the current measured temperature. Note, this is not
* ambient temperature. update() must have been called prior to
* calling this method. I2C only.
*
* @param fahrenheit true to return data in Fahrenheit, false for
* Celicus. Celsius is the default.
* @return The temperature in degrees Celsius or Fahrenheit.
*/
float getTemperature(bool fahrenheit=false);
/**
* Set the output data rate and cut off frequency of the device.
* I2C only.
*
* @param odr One of the ODR_CUTOFF_T values.
*/
void setODR(ODR_CUTOFF_T odr);
/**
* Enable or disable Block Data Update. When enabled, this
* ensures that LSB's or MSB's of a given axis are not being
* updated while the other is being read. This is enabled by
* default. I2C only.
*
* @param enable true to enable, false to disable
*/
void enableBDU(bool enable);
/**
* Return the bitfields of the Status register. This register
* provides information on the status of data gathering. I2C
* only.
*
* @return The contents of the REG_STATUS_REG register.
*/
uint8_t getStatusBits();
/**
* Installs an interrupt service routine (ISR) to be called when
* an interrupt occurs
* an interrupt occurs. IIO only.
*
* @param interrupt channel
* @param fptr Pointer to a function to be called on interrupt
@ -92,33 +548,39 @@ class L3GD20
void installISR(void (*isr)(char*), void* arg);
/**
* Extract the channel value based on channel type
* Extract the channel value based on channel type. IIO only.
*
* @param input Channel data
* @param chan MRAA iio-layer channel info
*/
int64_t getChannelValue(unsigned char* input, mraa_iio_channel* chan);
/**
* Enable trigger buffer
* Enable trigger buffer. IIO only.
*
* @param trigger buffer length in integer
*/
bool enableBuffer(int length);
/**
* Disable trigger buffer
* Disable trigger buffer. IIO only.
*/
bool disableBuffer();
/**
* Set scale
* Set scale. IIO only. For I2C operation, use setRange() with
* the appropriate FS_T value.
*
* @param scale in float
* Available scales are 0.000153(250dps), 0.000305(500dps), and 0.001222(2000dps)
* Default scale is 0.000153
* Available scales are 0.000153(250dps), 0.000305(500dps), and
* 0.001222(2000dps) Default scale is 0.000153
*/
bool setScale(const float scale);
/**
* Set sampling frequency
* Set sampling frequency. IIO only. For I2C operation, use the
* setODR() method with the appropriate ODR_CUTOFF_T value.
*
* @param sampling frequency in float
* Available sampling frequency are 95, 190, 380, and 760
* Default sampling frequency is 95
@ -126,12 +588,12 @@ class L3GD20
bool setSamplingFrequency(const float sampling_frequency);
/**
* Enable 3 axis scan element
* Enable 3 axis scan element. IIO only.
*/
bool enable3AxisChannel();
/**
* Process enabled channel buffer and return x, y, z axis
* Process enabled channel buffer and return x, y, z axis. IIO only.
* @param data Enabled channel data, 6 bytes, each axis 2 bytes
* @param x X-Axis
* @param y Y-Axis
@ -159,6 +621,31 @@ class L3GD20
*/
void loadCalibratedData(float bias_x, float bias_y, float bias_z);
/**
* Read a register. I2C mode only.
*
* @param reg The register to read.
* @return The value of the register.
*/
uint8_t readReg(uint8_t reg);
/**
* Read contiguous registers into a buffer. I2C mode only.
*
* @param buffer The buffer to store the results.
* @param len The number of registers to read.
* @return The number of bytes read.
*/
int readRegs(uint8_t reg, uint8_t *buffer, int len);
/**
* Write to a register. I2C mode only.
*
* @param reg The register to write to.
* @param val The value to write.
*/
void writeReg(uint8_t reg, uint8_t val);
/**
* Calibrate gyro
* @param x X-Axis
@ -200,8 +687,17 @@ class L3GD20
*/
void clampGyroReadingsToZero(float* x, float* y, float* z);
protected:
mraa::I2c *m_i2c;
float m_gyrScale;
float m_gyrX;
float m_gyrY;
float m_gyrZ;
float m_temperature;
private:
mraa_iio_context m_iio;
int m_iio_device_num;
bool m_mount_matrix_exist; // is mount matrix exist
float m_mount_matrix[9]; // mount matrix