rf22: Initial implementation for RFM22B radios, C++ only & bindings

Signed-off-by: Mihai Tudor Panu <mihai.tudor.panu@intel.com>
This commit is contained in:
Mihai Tudor Panu 2016-12-06 22:39:30 -08:00
parent c057fa6708
commit 130cb822e4
10 changed files with 1950 additions and 0 deletions

BIN
docs/images/rf22.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

View File

@ -325,6 +325,8 @@ add_example (ms5803)
add_example (ims)
add_example (ecezo)
add_example (mb704x)
add_example (rf22-server)
add_example (rf22-client)
# These are special cases where you specify example binary, source file and module(s)
include_directories (${PROJECT_SOURCE_DIR}/src)

View File

@ -0,0 +1,72 @@
/*
* Author: Kiveisha Yevgeniy
* Copyright (c) 2015-2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <signal.h>
#include "rf22.hpp"
bool amWorking = true;
void
sig_handler (int signo) {
if (signo == SIGINT) {
amWorking = false;
}
}
//! [Interesting]
int
main (int argc, char ** argv) {
// SPI bus 0, CS pin 10, INTR pin 2
upm::RF22* rf22 = new upm::RF22 (0, 10, 2);
if (!rf22->init()) {
std::cout << "RF22 init failed" << std::endl;
return 0x1;
}
uint8_t data[] = "Hello World!";
uint8_t buf[RF22_MAX_MESSAGE_LEN];
uint8_t len = sizeof(buf);
signal (SIGINT, sig_handler);
while (amWorking) {
std::cout << "Sending to rf22_server" << std::endl;
// Send a message to rf22_server
rf22->send(data, sizeof(data));
rf22->waitPacketSent();
// Now wait for a reply
rf22->waitAvailableTimeout(1000000);
if (rf22->recv(buf, &len)) {
std::cout << "got response: " << (char*)buf << std::endl;
} else {
std::cout << "!!! NO RESPONSE !!!" << std::endl;
}
}
std::cout << "Exit 'rfm22-client'" << std::endl;
return 0;
}
//! [Interesting]

View File

@ -0,0 +1,73 @@
/*
* Author: Kiveisha Yevgeniy
* Copyright (c) 2015-2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <signal.h>
#include "rf22.hpp"
bool amWorking = true;
void
sig_handler (int signo) {
if (signo == SIGINT) {
amWorking = false;
}
}
//! [Interesting]
int
main (int argc, char ** argv) {
// SPI bus 0, CS pin 10, INTR pin 2
upm::RF22* rf22 = new upm::RF22 (0, 10, 2);
if (!rf22->init()) {
std::cout << "RF22 init failed" << std::endl;
return 0x1;
}
uint8_t buf[RF22_MAX_MESSAGE_LEN];
uint8_t len = sizeof(buf);
signal (SIGINT, sig_handler);
while (amWorking) {
// rf22->waitAvailable();
rf22->waitAvailableTimeout (500);
// Should be a message for us now
if (rf22->recv(buf, &len)) {
std::cout << "got request: " << (char*)buf << std::endl;
// Send a reply
uint8_t data[] = "And hello back to you";
rf22->send(data, sizeof(data));
rf22->waitPacketSent();
} else {
// Do whatever you need.
}
}
delete rf22;
std::cout << "Exit 'rfm22-server'" << std::endl;
return 0;
}
//! [Interesting]

5
src/rf22/CMakeLists.txt Normal file
View File

@ -0,0 +1,5 @@
set (libname "rf22")
set (libdescription "HopeRF RFM22B ISM Band Radio Module")
set (module_src ${libname}.cxx)
set (module_hpp ${libname}.hpp)
upm_module_init()

24
src/rf22/javaupm_rf22.i Normal file
View File

@ -0,0 +1,24 @@
%module(directors="1") javaupm_rf22
%include "../upm.i"
%include "arrays_java.i"
%include "typemaps.i"
%apply uint8_t *INOUT { uint8_t* len };
%apply signed char[] {uint8_t*};
%{
#include "rf22.hpp"
%}
%include "rf22.hpp"
%pragma(java) jniclasscode=%{
static {
try {
System.loadLibrary("javaupm_rf22");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. \n" + e);
System.exit(1);
}
}
%}

9
src/rf22/jsupm_rf22.i Normal file
View File

@ -0,0 +1,9 @@
%module jsupm_rf22
%include "../upm.i"
%include "../carrays_uint8_t.i"
%{
#include "rf22.hpp"
%}
%include "rf22.hpp"

12
src/rf22/pyupm_rf22.i Normal file
View File

@ -0,0 +1,12 @@
// Include doxygen-generated documentation
%include "pyupm_doxy2swig.i"
%module pyupm_rf22
%include "../upm.i"
%include "../carrays_uint8_t.i"
%feature("autodoc", "3");
%include "rf22.hpp"
%{
#include "rf22.hpp"
%}

766
src/rf22/rf22.cxx Normal file
View File

@ -0,0 +1,766 @@
/*
* Author: Kiveisha Yevgeniy
* Copyright (c) 2015-2016 Intel Corporation
*
* Author: Mike McCauley
* Copyright (c) 2011 Mike McCauley
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <cstring>
#include <cmath>
#include <sys/time.h>
#include <rf22.hpp>
using namespace upm;
// These are indexed by the values of ModemConfigChoice
// Canned modem configurations generated with
// http://www.hoperf.com/upload/rf/RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
// Stored in flash (program) memory to save SRAM
static const RF22::ModemConfig MODEM_CONFIG_TABLE[] =
{
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
// All the following enable FIFO with reg 71
// 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72
// FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
// GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
// These differ from FSK only in register 71, for the modulation type
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
// OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
{ 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
{ 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
{ 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
{ 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
{ 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
{ 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
};
RF22::RF22(uint8_t spiBus, uint8_t slaveSelectPin, uint8_t interruptPin)
{
_idleMode = RF22_XTON; // Default idle state is READY mode
_mode = RF22_MODE_IDLE; // We start up in idle mode
_rxGood = 0;
_rxBad = 0;
_txGood = 0;
//Initialize the SPI bus and pins, MRAA will log any failures here
// start the SPI library:
// Note the RF22 wants mode 0, MSB first and default to 1 Mbps
_spi = mraa_spi_init(spiBus);
mraa_spi_mode (_spi, MRAA_SPI_MODE0);
mraa_spi_lsbmode(_spi, 0);
mraa_spi_frequency(_spi, 1000000); // 1Mhz
_cs = mraa_gpio_init(slaveSelectPin);
mraa_gpio_dir(_cs, MRAA_GPIO_OUT);
_irq = mraa_gpio_init(interruptPin);
mraa_gpio_dir(_irq, MRAA_GPIO_IN);
mraa_gpio_isr(_irq, MRAA_GPIO_EDGE_FALLING, &isr, (void*)this);
}
RF22::~RF22()
{
mraa_spi_stop(_spi);
mraa_gpio_close(_cs);
mraa_gpio_close(_irq);
}
uint8_t RF22::init()
{
// Wait for RF22 POR (up to 16msec)
usleep (16);
// Initialise the slave select pin
mraa_gpio_write(_cs, 0x1);
usleep (100);
// Software reset the device
reset();
// Get the device type and check it
// This also tests whether we are really connected to a device
_deviceType = spiRead(RF22_REG_00_DEVICE_TYPE);
if ( _deviceType != RF22_DEVICE_TYPE_RX_TRX
&& _deviceType != RF22_DEVICE_TYPE_TX)
return 0;
clearTxBuf();
clearRxBuf();
// Most of these are the POR default
spiWrite(RF22_REG_7D_TX_FIFO_CONTROL2, RF22_TXFFAEM_THRESHOLD);
spiWrite(RF22_REG_7E_RX_FIFO_CONTROL, RF22_RXFFAFULL_THRESHOLD);
spiWrite(RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM);
// Configure the message headers
// Here we set up the standard packet format for use by the RF22 library
// 8 nibbles preamble
// 2 SYNC words 2d, d4
// Header length 4 (to, from, id, flags)
// 1 octet of data length (0 to 255)
// 0 to 255 octets data
// 2 CRC octets as CRC16(IBM), computed on the header, length and data
// On reception the to address is check for validity against RF22_REG_3F_CHECK_HEADER3
// or the broadcast address of 0xff
// If no changes are made after this, the transmitted
// to address will be 0xff, the from address will be 0xff
// and all such messages will be accepted. This permits the out-of the box
// RF22 config to act as an unaddresed, unreliable datagram service
spiWrite(RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3);
spiWrite(RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2);
setPreambleLength(8);
uint8_t syncwords[] = { 0x2d, 0xd4 };
setSyncWords(syncwords, sizeof(syncwords));
setPromiscuous(0);
// Check the TO header against RF22_DEFAULT_NODE_ADDRESS
spiWrite(RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS);
// Set the default transmit header values
setHeaderTo(RF22_DEFAULT_NODE_ADDRESS);
setHeaderFrom(RF22_DEFAULT_NODE_ADDRESS);
setHeaderId(0);
setHeaderFlags(0);
// Ensure the antenna can be switched automatically according to transmit and receive
// This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
// This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
spiWrite (RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
spiWrite (RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
// Enable interrupts
spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM | RF22_ENRXFFAFULL | RF22_ENPKSENT | RF22_ENPKVALID | RF22_ENCRCERROR | RF22_ENFFERR);
spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL);
// Set some defaults. An innocuous ISM frequency, and reasonable pull-in
setFrequency(434.0, 0.05);
// setFrequency(900.0);
// Some slow, reliable default speed and modulation
setModemConfig(FSK_Rb2_4Fd36);
// setModemConfig(FSK_Rb125Fd125);
// Minimum power
setTxPower(RF22_TXPOW_8DBM);
// setTxPower(RF22_TXPOW_17DBM);
return 1;
}
// C++ level interrupt handler for this instance
void RF22::handleInterrupt()
{
uint8_t _lastInterruptFlags[2];
// Read the interrupt flags which clears the interrupt
spiBurstRead(RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2);
if (_lastInterruptFlags[0] & RF22_IFFERROR)
{
resetFifos(); // Clears the interrupt
if (_mode == RF22_MODE_TX)
restartTransmit();
else if (_mode == RF22_MODE_RX)
clearRxBuf();
}
// Caution, any delay here may cause a FF underflow or overflow
if (_lastInterruptFlags[0] & RF22_ITXFFAEM)
{
// See if more data has to be loaded into the Tx FIFO
sendNextFragment();
}
if (_lastInterruptFlags[0] & RF22_IRXFFAFULL)
{
// Caution, any delay here may cause a FF overflow
// Read some data from the Rx FIFO
readNextFragment();
}
if (_lastInterruptFlags[0] & RF22_IEXT)
{
// This is not enabled by the base code, but users may want to enable it
handleExternalInterrupt();
}
if (_lastInterruptFlags[1] & RF22_IWUT)
{
// This is not enabled by the base code, but users may want to enable it
handleWakeupTimerInterrupt();
}
if (_lastInterruptFlags[0] & RF22_IPKSENT)
{
_txGood++;
// Transmission does not automatically clear the tx buffer.
// Could retransmit if we wanted
// RF22 transitions automatically to Idle
_mode = RF22_MODE_IDLE;
}
if (_lastInterruptFlags[0] & RF22_IPKVALID)
{
uint8_t len = spiRead(RF22_REG_4B_RECEIVED_PACKET_LENGTH);
// May have already read one or more fragments
// Get any remaining unread octets, based on the expected length
// First make sure we dont overflow the buffer in the case of a stupid length
// or partial bad receives
if ( len > RF22_MAX_MESSAGE_LEN
|| len < _bufLen)
{
_rxBad++;
_mode = RF22_MODE_IDLE;
clearRxBuf();
return; // Hmmm receiver buffer overflow.
}
spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen);
_rxGood++;
_bufLen = len;
_mode = RF22_MODE_IDLE;
_rxBufValid = true;
}
if (_lastInterruptFlags[0] & RF22_ICRCERROR)
{
_rxBad++;
clearRxBuf();
resetRxFifo();
_mode = RF22_MODE_IDLE;
setModeRx(); // Keep trying
}
if (_lastInterruptFlags[1] & RF22_IPREAVAL)
{
_lastRssi = spiRead(RF22_REG_26_RSSI);
clearRxBuf();
}
}
void RF22::isr(void* args)
{
RF22* This = (RF22*)(args);
This->handleInterrupt();
}
void RF22::reset()
{
spiWrite(RF22_REG_07_OPERATING_MODE1, RF22_SWRES);
// Wait for it to settle
usleep(100); // SWReset time is nominally 100usec
}
uint8_t RF22::spiRead(uint8_t reg)
{
uint8_t data;
spiBurstRead (reg, &data, 1);
return data;
}
void RF22::spiWrite(uint8_t reg, uint8_t val)
{
spiBurstWrite (reg, &val, 1);
}
void RF22::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
{
uint8_t *request;
uint8_t *response;
request = (uint8_t *) malloc(sizeof(uint8_t) * (len + 1));
response = (uint8_t *) malloc(sizeof(uint8_t) * (len + 1));
memset(request, 0x00, len + 1);
memset(response, 0x00, len + 1);
request[0] = reg & ~RF22_SPI_WRITE_MASK;
memcpy (&request[1], dest, len);
mraa_gpio_write(_cs, 0x1);
mraa_gpio_write(_cs, 0x0);
usleep(100);
mraa_spi_transfer_buf(_spi, request, response, len + 1);
usleep(100);
mraa_gpio_write(_cs, 0x1);
memcpy (dest, &response[1], len);
free (request);
free (response);
}
void RF22::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len)
{
uint8_t *request;
uint8_t *response;
request = (uint8_t *) malloc(sizeof(uint8_t) * (len + 1));
response = (uint8_t *) malloc(sizeof(uint8_t) * (len + 1));
memset(request, 0x00, len + 1);
memset(response, 0x00, len + 1);
request[0] = reg | RF22_SPI_WRITE_MASK;
memcpy (&request[1], src, len);
mraa_gpio_write(_cs, 0x1);
mraa_gpio_write(_cs, 0x0);
usleep(100);
mraa_spi_transfer_buf(_spi, request, response, len + 1);
usleep(100);
mraa_gpio_write(_cs, 0x1);
free (request);
free (response);
}
uint8_t RF22::statusRead()
{
return spiRead(RF22_REG_02_DEVICE_STATUS);
}
uint8_t RF22::adcRead(uint8_t adcsel,
uint8_t adcref ,
uint8_t adcgain,
uint8_t adcoffs)
{
uint8_t configuration = adcsel | adcref | (adcgain & RF22_ADCGAIN);
spiWrite(RF22_REG_0F_ADC_CONFIGURATION, configuration | RF22_ADCSTART);
spiWrite(RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
// Conversion time is nominally 305usec
// Wait for the DONE bit
while (!(spiRead(RF22_REG_0F_ADC_CONFIGURATION) & RF22_ADCDONE))
;
// Return the value
return spiRead(RF22_REG_11_ADC_VALUE);
}
uint8_t RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
{
spiWrite(RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RF22_ENTSOFFS);
spiWrite(RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
return adcRead(RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RF22_ADCREF_BANDGAP_VOLTAGE);
}
uint16_t RF22::wutRead()
{
uint8_t buf[2];
spiBurstRead(RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
}
// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
void RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
{
uint8_t period[3];
period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
period[1] = wtm >> 8;
period[2] = wtm & 0xff;
spiBurstWrite(RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
}
// Returns true if center + (fhch * fhs) is within limits
// Caution, different versions of the RF22 support different max freq
// so YMMV
uint8_t RF22::setFrequency(float center, float afcPullInRange)
{
uint8_t fbsel = RF22_SBSEL;
uint8_t afclimiter;
if (center < 240.0 || center > 960.0) // 930.0 for early silicon
return false;
if (center >= 480.0)
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.318750)
return false;
center /= 2;
fbsel |= RF22_HBSEL;
afclimiter = afcPullInRange * 1000000.0 / 1250.0;
}
else
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
return false;
afclimiter = afcPullInRange * 1000000.0 / 625.0;
}
center /= 10.0;
float integerPart = floor(center);
float fractionalPart = center - integerPart;
uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
fbsel |= fb;
uint16_t fc = fractionalPart * 64000;
spiWrite(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
spiWrite(RF22_REG_74_FREQUENCY_OFFSET2, 0);
spiWrite(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
spiWrite(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
spiWrite(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
spiWrite(RF22_REG_2A_AFC_LIMITER, afclimiter);
return !(statusRead() & RF22_FREQERR);
}
// Step size in 10kHz increments
// Returns true if centre + (fhch * fhs) is within limits
uint8_t RF22::setFHStepSize(uint8_t fhs)
{
spiWrite(RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
return !(statusRead() & RF22_FREQERR);
}
// Adds fhch * fhs to centre frequency
// Returns true if centre + (fhch * fhs) is within limits
uint8_t RF22::setFHChannel(uint8_t fhch)
{
spiWrite(RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
return !(statusRead() & RF22_FREQERR);
}
uint8_t RF22::rssiRead()
{
return spiRead(RF22_REG_26_RSSI);
}
uint8_t RF22::ezmacStatusRead()
{
return spiRead(RF22_REG_31_EZMAC_STATUS);
}
void RF22::setMode(uint8_t mode)
{
spiWrite(RF22_REG_07_OPERATING_MODE1, mode);
}
void RF22::setModeIdle()
{
if (_mode != RF22_MODE_IDLE)
{
setMode(_idleMode);
_mode = RF22_MODE_IDLE;
}
}
void RF22::setModeRx()
{
if (_mode != RF22_MODE_RX)
{
setMode(_idleMode | RF22_RXON);
_mode = RF22_MODE_RX;
}
}
void RF22::setModeTx()
{
if (_mode != RF22_MODE_TX)
{
setMode(_idleMode | RF22_TXON);
_mode = RF22_MODE_TX;
// Hmmm, if you dont clear the RX FIFO here, then it appears that going
// to transmit mode in the middle of a receive can corrupt the
// RX FIFO
resetRxFifo();
clearRxBuf();
}
}
uint8_t RF22::mode()
{
return _mode;
}
void RF22::setTxPower(uint8_t power)
{
spiWrite(RF22_REG_6D_TX_POWER, power);
}
// Sets registers from a canned modem configuration structure
void RF22::setModemRegisters(const ModemConfig* config)
{
spiWrite(RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c);
spiWrite(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f);
spiBurstWrite(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
spiBurstWrite(RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3);
spiWrite(RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58);
spiWrite(RF22_REG_69_AGC_OVERRIDE1, config->reg_69);
spiBurstWrite(RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
uint8_t RF22::setModemConfig(ModemConfigChoice index)
{
if (index > (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
RF22::ModemConfig cfg;
// memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig)); // !!!!!!!!!!!!!!!!!!! MIGHT CAUSE ISSUES
memcpy(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig));
setModemRegisters(&cfg);
return true;
}
// REVISIT: top bit is in Header Control 2 0x33
void RF22::setPreambleLength(uint8_t nibbles)
{
spiWrite(RF22_REG_34_PREAMBLE_LENGTH, nibbles);
}
// Caution doesnt set sync word len in Header Control 2 0x33
void RF22::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
spiBurstWrite(RF22_REG_36_SYNC_WORD3, syncWords, len);
}
void RF22::clearRxBuf()
{
_bufLen = 0;
_rxBufValid = false;
}
uint8_t RF22::available()
{
if (!_rxBufValid)
setModeRx(); // Make sure we are receiving
return _rxBufValid;
}
// Blocks until a valid message is received
void RF22::waitAvailable()
{
while (!available())
;
}
// Blocks until a valid message is received or timeout expires
// Return true if there is a message available
bool RF22::waitAvailableTimeout(unsigned long timeout)
{
unsigned long endtime = getTimestamp() + timeout;
unsigned long currenttime = getTimestamp();
while (currenttime < endtime) {
currenttime = getTimestamp();
if (available()) {
return true;
}
}
return false;
}
void RF22::waitPacketSent()
{
while (_mode == RF22_MODE_TX)
; // Wait for any previous transmit to finish
}
// Diagnostic help
void RF22::printBuffer(const char* prompt, const uint8_t* buf, uint8_t len)
{
}
uint8_t RF22::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (*len > _bufLen)
*len = _bufLen;
memcpy(buf, _buf, *len);
clearRxBuf();
return true;
}
void RF22::clearTxBuf()
{
_bufLen = 0;
_txBufSentIndex = 0;
}
void RF22::startTransmit()
{
sendNextFragment(); // Actually the first fragment
spiWrite(RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
setModeTx(); // Start the transmitter, turns off the receiver
}
// Restart the transmission of a packet that had a problem
void RF22::restartTransmit()
{
_mode = RF22_MODE_IDLE;
_txBufSentIndex = 0;
startTransmit();
}
uint8_t RF22::send(const uint8_t* data, uint8_t len)
{
waitPacketSent();
if (!fillTxBuf(data, len))
return false;
startTransmit();
return true;
}
uint8_t RF22::fillTxBuf(const uint8_t* data, uint8_t len)
{
clearTxBuf();
if (!len)
return false;
return appendTxBuf(data, len);
}
uint8_t RF22::appendTxBuf(const uint8_t* data, uint8_t len)
{
if (((uint16_t)_bufLen + len) > RF22_MAX_MESSAGE_LEN)
return false;
memcpy(_buf + _bufLen, data, len);
_bufLen += len;
return true;
}
// Assumption: there is currently <= RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
void RF22::sendNextFragment()
{
if (_txBufSentIndex < _bufLen)
{
// Some left to send?
uint8_t len = _bufLen - _txBufSentIndex;
// But dont send too much
if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1))
len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1);
spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
_txBufSentIndex += len;
}
}
// Assumption: there are at least RF22_RXFFAFULL_THRESHOLD in the RX FIFO
// That means it should only be called after a RXFFAFULL interrupt
void RF22::readNextFragment()
{
if (((uint16_t)_bufLen + RF22_RXFFAFULL_THRESHOLD) > RF22_MAX_MESSAGE_LEN)
return; // Hmmm receiver overflow. Should never occur
// Read the RF22_RXFFAFULL_THRESHOLD octets that should be there
spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RF22_RXFFAFULL_THRESHOLD);
_bufLen += RF22_RXFFAFULL_THRESHOLD;
}
// Clear the FIFOs
void RF22::resetFifos()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX | RF22_FFCLRTX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// Clear the Rx FIFO
void RF22::resetRxFifo()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// CLear the TX FIFO
void RF22::resetTxFifo()
{
spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRTX);
spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
}
// Default implmentation does nothing. Override if you wish
void RF22::handleExternalInterrupt()
{
}
// Default implmentation does nothing. Override if you wish
void RF22::handleWakeupTimerInterrupt()
{
}
void RF22::setHeaderTo(uint8_t to)
{
spiWrite(RF22_REG_3A_TRANSMIT_HEADER3, to);
}
void RF22::setHeaderFrom(uint8_t from)
{
spiWrite(RF22_REG_3B_TRANSMIT_HEADER2, from);
}
void RF22::setHeaderId(uint8_t id)
{
spiWrite(RF22_REG_3C_TRANSMIT_HEADER1, id);
}
void RF22::setHeaderFlags(uint8_t flags)
{
spiWrite(RF22_REG_3D_TRANSMIT_HEADER0, flags);
}
uint8_t RF22::headerTo()
{
return spiRead(RF22_REG_47_RECEIVED_HEADER3);
}
uint8_t RF22::headerFrom()
{
return spiRead(RF22_REG_48_RECEIVED_HEADER2);
}
uint8_t RF22::headerId()
{
return spiRead(RF22_REG_49_RECEIVED_HEADER1);
}
uint8_t RF22::headerFlags()
{
return spiRead(RF22_REG_4A_RECEIVED_HEADER0);
}
uint8_t RF22::lastRssi()
{
return _lastRssi;
}
void RF22::setPromiscuous(uint8_t promiscuous)
{
spiWrite(RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
}
uint64_t
RF22::getTimestamp () {
struct timeval tv;
gettimeofday(&tv, NULL);
return (uint64_t)(1000000 * tv.tv_sec + tv.tv_usec);
}

987
src/rf22/rf22.hpp Normal file
View File

@ -0,0 +1,987 @@
/*
* Author: Kiveisha Yevgeniy
* Copyright (c) 2015-2016 Intel Corporation
*
* Author: Mike McCauley
* Copyright (c) 2011 Mike McCauley
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <stdint.h>
#include <mraa.h>
// This is the bit in the SPI address that marks it as a write
#define RF22_SPI_WRITE_MASK 0x80
// This is the maximum message length that can be supported by this library. Limited by
// the single message length octet in the header.
// Yes, 255 is correct even though the FIFO size in the RF22 is only
// 64 octets. We use interrupts to refill the Tx FIFO during transmission and to empty the
// Rx FIFO during reception
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
#ifndef RF22_MAX_MESSAGE_LEN
//#define RF22_MAX_MESSAGE_LEN 255
#define RF22_MAX_MESSAGE_LEN 50
#endif
// Max number of octets the RF22 Rx and Tx FIFOs can hold
#define RF22_FIFO_SIZE 64
// Keep track of the mode the RF22 is in
#define RF22_MODE_IDLE 0
#define RF22_MODE_RX 1
#define RF22_MODE_TX 2
// These values we set for FIFO thresholds are actually the same as the POR values
#define RF22_TXFFAEM_THRESHOLD 4
#define RF22_RXFFAFULL_THRESHOLD 55
// This is the default node address,
#define RF22_DEFAULT_NODE_ADDRESS 0
// This address in the TO address signifies a broadcast
#define RF22_BROADCAST_ADDRESS 0xff
// Number of registers to be passed to setModemConfig()
#define RF22_NUM_MODEM_CONFIG_REGS 18
// Register names
#define RF22_REG_00_DEVICE_TYPE 0x00
#define RF22_REG_01_VERSION_CODE 0x01
#define RF22_REG_02_DEVICE_STATUS 0x02
#define RF22_REG_03_INTERRUPT_STATUS1 0x03
#define RF22_REG_04_INTERRUPT_STATUS2 0x04
#define RF22_REG_05_INTERRUPT_ENABLE1 0x05
#define RF22_REG_06_INTERRUPT_ENABLE2 0x06
#define RF22_REG_07_OPERATING_MODE1 0x07
#define RF22_REG_08_OPERATING_MODE2 0x08
#define RF22_REG_09_OSCILLATOR_LOAD_CAPACITANCE 0x09
#define RF22_REG_0A_UC_OUTPUT_CLOCK 0x0a
#define RF22_REG_0B_GPIO_CONFIGURATION0 0x0b
#define RF22_REG_0C_GPIO_CONFIGURATION1 0x0c
#define RF22_REG_0D_GPIO_CONFIGURATION2 0x0d
#define RF22_REG_0E_IO_PORT_CONFIGURATION 0x0e
#define RF22_REG_0F_ADC_CONFIGURATION 0x0f
#define RF22_REG_10_ADC_SENSOR_AMP_OFFSET 0x10
#define RF22_REG_11_ADC_VALUE 0x11
#define RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION 0x12
#define RF22_REG_13_TEMPERATURE_VALUE_OFFSET 0x13
#define RF22_REG_14_WAKEUP_TIMER_PERIOD1 0x14
#define RF22_REG_15_WAKEUP_TIMER_PERIOD2 0x15
#define RF22_REG_16_WAKEUP_TIMER_PERIOD3 0x16
#define RF22_REG_17_WAKEUP_TIMER_VALUE1 0x17
#define RF22_REG_18_WAKEUP_TIMER_VALUE2 0x18
#define RF22_REG_19_LDC_MODE_DURATION 0x19
#define RF22_REG_1A_LOW_BATTERY_DETECTOR_THRESHOLD 0x1a
#define RF22_REG_1B_BATTERY_VOLTAGE_LEVEL 0x1b
#define RF22_REG_1C_IF_FILTER_BANDWIDTH 0x1c
#define RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE 0x1d
#define RF22_REG_1E_AFC_TIMING_CONTROL 0x1e
#define RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE 0x1f
#define RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE 0x20
#define RF22_REG_21_CLOCK_RECOVERY_OFFSET2 0x21
#define RF22_REG_22_CLOCK_RECOVERY_OFFSET1 0x22
#define RF22_REG_23_CLOCK_RECOVERY_OFFSET0 0x23
#define RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1 0x24
#define RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0 0x25
#define RF22_REG_26_RSSI 0x26
#define RF22_REG_27_RSSI_THRESHOLD 0x27
#define RF22_REG_28_ANTENNA_DIVERSITY1 0x28
#define RF22_REG_29_ANTENNA_DIVERSITY2 0x29
#define RF22_REG_2A_AFC_LIMITER 0x2a
#define RF22_REG_2B_AFC_CORRECTION_READ 0x2b
#define RF22_REG_2C_OOK_COUNTER_VALUE_1 0x2c
#define RF22_REG_2D_OOK_COUNTER_VALUE_2 0x2d
#define RF22_REG_2E_SLICER_PEAK_HOLD 0x2e
#define RF22_REG_30_DATA_ACCESS_CONTROL 0x30
#define RF22_REG_31_EZMAC_STATUS 0x31
#define RF22_REG_32_HEADER_CONTROL1 0x32
#define RF22_REG_33_HEADER_CONTROL2 0x33
#define RF22_REG_34_PREAMBLE_LENGTH 0x34
#define RF22_REG_35_PREAMBLE_DETECTION_CONTROL1 0x35
#define RF22_REG_36_SYNC_WORD3 0x36
#define RF22_REG_37_SYNC_WORD2 0x37
#define RF22_REG_38_SYNC_WORD1 0x38
#define RF22_REG_39_SYNC_WORD0 0x39
#define RF22_REG_3A_TRANSMIT_HEADER3 0x3a
#define RF22_REG_3B_TRANSMIT_HEADER2 0x3b
#define RF22_REG_3C_TRANSMIT_HEADER1 0x3c
#define RF22_REG_3D_TRANSMIT_HEADER0 0x3d
#define RF22_REG_3E_PACKET_LENGTH 0x3e
#define RF22_REG_3F_CHECK_HEADER3 0x3f
#define RF22_REG_40_CHECK_HEADER2 0x40
#define RF22_REG_41_CHECK_HEADER1 0x41
#define RF22_REG_42_CHECK_HEADER0 0x42
#define RF22_REG_43_HEADER_ENABLE3 0x43
#define RF22_REG_44_HEADER_ENABLE2 0x44
#define RF22_REG_45_HEADER_ENABLE1 0x45
#define RF22_REG_46_HEADER_ENABLE0 0x46
#define RF22_REG_47_RECEIVED_HEADER3 0x47
#define RF22_REG_48_RECEIVED_HEADER2 0x48
#define RF22_REG_49_RECEIVED_HEADER1 0x49
#define RF22_REG_4A_RECEIVED_HEADER0 0x4a
#define RF22_REG_4B_RECEIVED_PACKET_LENGTH 0x4b
#define RF22_REG_50_ANALOG_TEST_BUS_SELECT 0x50
#define RF22_REG_51_DIGITAL_TEST_BUS_SELECT 0x51
#define RF22_REG_52_TX_RAMP_CONTROL 0x52
#define RF22_REG_53_PLL_TUNE_TIME 0x53
#define RF22_REG_55_CALIBRATION_CONTROL 0x55
#define RF22_REG_56_MODEM_TEST 0x56
#define RF22_REG_57_CHARGE_PUMP_TEST 0x57
#define RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING 0x58
#define RF22_REG_59_DIVIDER_CURRENT_TRIMMING 0x59
#define RF22_REG_5A_VCO_CURRENT_TRIMMING 0x5a
#define RF22_REG_5B_VCO_CALIBRATION 0x5b
#define RF22_REG_5C_SYNTHESIZER_TEST 0x5c
#define RF22_REG_5D_BLOCK_ENABLE_OVERRIDE1 0x5d
#define RF22_REG_5E_BLOCK_ENABLE_OVERRIDE2 0x5e
#define RF22_REG_5F_BLOCK_ENABLE_OVERRIDE3 0x5f
#define RF22_REG_60_CHANNEL_FILTER_COEFFICIENT_ADDRESS 0x60
#define RF22_REG_61_CHANNEL_FILTER_COEFFICIENT_VALUE 0x61
#define RF22_REG_62_CRYSTAL_OSCILLATOR_POR_CONTROL 0x62
#define RF22_REG_63_RC_OSCILLATOR_COARSE_CALIBRATION 0x63
#define RF22_REG_64_RC_OSCILLATOR_FINE_CALIBRATION 0x64
#define RF22_REG_65_LDO_CONTROL_OVERRIDE 0x65
#define RF22_REG_66_LDO_LEVEL_SETTINGS 0x66
#define RF22_REG_67_DELTA_SIGMA_ADC_TUNING1 0x67
#define RF22_REG_68_DELTA_SIGMA_ADC_TUNING2 0x68
#define RF22_REG_69_AGC_OVERRIDE1 0x69
#define RF22_REG_6A_AGC_OVERRIDE2 0x6a
#define RF22_REG_6B_GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6b
#define RF22_REG_6C_GFSK_FIR_FILTER_COEFFICIENT_VALUE 0x6c
#define RF22_REG_6D_TX_POWER 0x6d
#define RF22_REG_6E_TX_DATA_RATE1 0x6e
#define RF22_REG_6F_TX_DATA_RATE0 0x6f
#define RF22_REG_70_MODULATION_CONTROL1 0x70
#define RF22_REG_71_MODULATION_CONTROL2 0x71
#define RF22_REG_72_FREQUENCY_DEVIATION 0x72
#define RF22_REG_73_FREQUENCY_OFFSET1 0x73
#define RF22_REG_74_FREQUENCY_OFFSET2 0x74
#define RF22_REG_75_FREQUENCY_BAND_SELECT 0x75
#define RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1 0x76
#define RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0 0x77
#define RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT 0x79
#define RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE 0x7a
#define RF22_REG_7C_TX_FIFO_CONTROL1 0x7c
#define RF22_REG_7D_TX_FIFO_CONTROL2 0x7d
#define RF22_REG_7E_RX_FIFO_CONTROL 0x7e
#define RF22_REG_7F_FIFO_ACCESS 0x7f
// These register masks etc are named wherever possible
// corresponding to the bit and field names in the RF-22 Manual
// RF22_REG_00_DEVICE_TYPE 0x00
#define RF22_DEVICE_TYPE_RX_TRX 0x08
#define RF22_DEVICE_TYPE_TX 0x07
// RF22_REG_02_DEVICE_STATUS 0x02
#define RF22_FFOVL 0x80
#define RF22_FFUNFL 0x40
#define RF22_RXFFEM 0x20
#define RF22_HEADERR 0x10
#define RF22_FREQERR 0x08
#define RF22_LOCKDET 0x04
#define RF22_CPS 0x03
#define RF22_CPS_IDLE 0x00
#define RF22_CPS_RX 0x01
#define RF22_CPS_TX 0x10
// RF22_REG_03_INTERRUPT_STATUS1 0x03
#define RF22_IFFERROR 0x80
#define RF22_ITXFFAFULL 0x40
#define RF22_ITXFFAEM 0x20
#define RF22_IRXFFAFULL 0x10
#define RF22_IEXT 0x08
#define RF22_IPKSENT 0x04
#define RF22_IPKVALID 0x02
#define RF22_ICRCERROR 0x01
// RF22_REG_04_INTERRUPT_STATUS2 0x04
#define RF22_ISWDET 0x80
#define RF22_IPREAVAL 0x40
#define RF22_IPREAINVAL 0x20
#define RF22_IRSSI 0x10
#define RF22_IWUT 0x08
#define RF22_ILBD 0x04
#define RF22_ICHIPRDY 0x02
#define RF22_IPOR 0x01
// RF22_REG_05_INTERRUPT_ENABLE1 0x05
#define RF22_ENFFERR 0x80
#define RF22_ENTXFFAFULL 0x40
#define RF22_ENTXFFAEM 0x20
#define RF22_ENRXFFAFULL 0x10
#define RF22_ENEXT 0x08
#define RF22_ENPKSENT 0x04
#define RF22_ENPKVALID 0x02
#define RF22_ENCRCERROR 0x01
// RF22_REG_06_INTERRUPT_ENABLE2 0x06
#define RF22_ENSWDET 0x80
#define RF22_ENPREAVAL 0x40
#define RF22_ENPREAINVAL 0x20
#define RF22_ENRSSI 0x10
#define RF22_ENWUT 0x08
#define RF22_ENLBDI 0x04
#define RF22_ENCHIPRDY 0x02
#define RF22_ENPOR 0x01
// RF22_REG_07_OPERATING_MODE 0x07
#define RF22_SWRES 0x80
#define RF22_ENLBD 0x40
#define RF22_ENWT 0x20
#define RF22_X32KSEL 0x10
#define RF22_TXON 0x08
#define RF22_RXON 0x04
#define RF22_PLLON 0x02
#define RF22_XTON 0x01
// RF22_REG_08_OPERATING_MODE2 0x08
#define RF22_ANTDIV 0xc0
#define RF22_RXMPK 0x10
#define RF22_AUTOTX 0x08
#define RF22_ENLDM 0x04
#define RF22_FFCLRRX 0x02
#define RF22_FFCLRTX 0x01
// RF22_REG_0F_ADC_CONFIGURATION 0x0f
#define RF22_ADCSTART 0x80
#define RF22_ADCDONE 0x80
#define RF22_ADCSEL 0x70
#define RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR 0x00
#define RF22_ADCSEL_GPIO0_SINGLE_ENDED 0x10
#define RF22_ADCSEL_GPIO1_SINGLE_ENDED 0x20
#define RF22_ADCSEL_GPIO2_SINGLE_ENDED 0x30
#define RF22_ADCSEL_GPIO0_GPIO1_DIFFERENTIAL 0x40
#define RF22_ADCSEL_GPIO1_GPIO2_DIFFERENTIAL 0x50
#define RF22_ADCSEL_GPIO0_GPIO2_DIFFERENTIAL 0x60
#define RF22_ADCSEL_GND 0x70
#define RF22_ADCREF 0x0c
#define RF22_ADCREF_BANDGAP_VOLTAGE 0x00
#define RF22_ADCREF_VDD_ON_3 0x08
#define RF22_ADCREF_VDD_ON_2 0x0c
#define RF22_ADCGAIN 0x03
// RF22_REG_10_ADC_SENSOR_AMP_OFFSET 0x10
#define RF22_ADCOFFS 0x0f
// RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION 0x12
#define RF22_TSRANGE 0xc0
#define RF22_TSRANGE_M64_64C 0x00
#define RF22_TSRANGE_M64_192C 0x40
#define RF22_TSRANGE_0_128C 0x80
#define RF22_TSRANGE_M40_216F 0xc0
#define RF22_ENTSOFFS 0x20
#define RF22_ENTSTRIM 0x10
#define RF22_TSTRIM 0x0f
// RF22_REG_14_WAKEUP_TIMER_PERIOD1 0x14
#define RF22_WTR 0x3c
#define RF22_WTD 0x03
// RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE 0x1d
#define RF22_AFBCD 0x80
#define RF22_ENAFC 0x40
#define RF22_AFCGEARH 0x38
#define RF22_AFCGEARL 0x07
// RF22_REG_1E_AFC_TIMING_CONTROL 0x1e
#define RF22_SWAIT_TIMER 0xc0
#define RF22_SHWAIT 0x38
#define RF22_ANWAIT 0x07
// RF22_REG_30_DATA_ACCESS_CONTROL 0x30
#define RF22_ENPACRX 0x80
#define RF22_MSBFRST 0x00
#define RF22_LSBFRST 0x40
#define RF22_CRCHDRS 0x00
#define RF22_CRCDONLY 0x20
#define RF22_ENPACTX 0x08
#define RF22_ENCRC 0x04
#define RF22_CRC 0x03
#define RF22_CRC_CCITT 0x00
#define RF22_CRC_CRC_16_IBM 0x01
#define RF22_CRC_IEC_16 0x02
#define RF22_CRC_BIACHEVA 0x03
// RF22_REG_32_HEADER_CONTROL1 0x32
#define RF22_BCEN 0xf0
#define RF22_BCEN_NONE 0x00
#define RF22_BCEN_HEADER0 0x10
#define RF22_BCEN_HEADER1 0x20
#define RF22_BCEN_HEADER2 0x40
#define RF22_BCEN_HEADER3 0x80
#define RF22_HDCH 0x0f
#define RF22_HDCH_NONE 0x00
#define RF22_HDCH_HEADER0 0x01
#define RF22_HDCH_HEADER1 0x02
#define RF22_HDCH_HEADER2 0x04
#define RF22_HDCH_HEADER3 0x08
// RF22_REG_33_HEADER_CONTROL2 0x33
#define RF22_HDLEN 0x70
#define RF22_HDLEN_0 0x00
#define RF22_HDLEN_1 0x10
#define RF22_HDLEN_2 0x20
#define RF22_HDLEN_3 0x30
#define RF22_HDLEN_4 0x40
#define RF22_VARPKLEN 0x00
#define RF22_FIXPKLEN 0x08
#define RF22_SYNCLEN 0x06
#define RF22_SYNCLEN_1 0x00
#define RF22_SYNCLEN_2 0x02
#define RF22_SYNCLEN_3 0x04
#define RF22_SYNCLEN_4 0x06
#define RF22_PREALEN8 0x01
// RF22_REG_6D_TX_POWER 0x6d
#define RF22_TXPOW 0x07
#define RF22_TXPOW_4X31 0x08 // Not used in RFM22B
#define RF22_TXPOW_1DBM 0x00
#define RF22_TXPOW_2DBM 0x01
#define RF22_TXPOW_5DBM 0x02
#define RF22_TXPOW_8DBM 0x03
#define RF22_TXPOW_11DBM 0x04
#define RF22_TXPOW_14DBM 0x05
#define RF22_TXPOW_17DBM 0x06
#define RF22_TXPOW_20DBM 0x07
// IN RFM23B
#define RF22_TXPOW_LNA_SW 0x08
// RF22_REG_71_MODULATION_CONTROL2 0x71
#define RF22_TRCLK 0xc0
#define RF22_TRCLK_NONE 0x00
#define RF22_TRCLK_GPIO 0x40
#define RF22_TRCLK_SDO 0x80
#define RF22_TRCLK_NIRQ 0xc0
#define RF22_DTMOD 0x30
#define RF22_DTMOD_DIRECT_GPIO 0x00
#define RF22_DTMOD_DIRECT_SDI 0x10
#define RF22_DTMOD_FIFO 0x20
#define RF22_DTMOD_PN9 0x30
#define RF22_ENINV 0x08
#define RF22_FD8 0x04
#define RF22_MODTYP 0x30
#define RF22_MODTYP_UNMODULATED 0x00
#define RF22_MODTYP_OOK 0x01
#define RF22_MODTYP_FSK 0x02
#define RF22_MODTYP_GFSK 0x03
// RF22_REG_75_FREQUENCY_BAND_SELECT 0x75
#define RF22_SBSEL 0x40
#define RF22_HBSEL 0x20
#define RF22_FB 0x1f
// Define this to include Serial printing in diagnostic routines
#define RF22_HAVE_SERIAL
namespace upm {
/**
* @brief RF22 Wireless Transceiver library
* @defgroup rf22 libupm-rf22
* @ingroup sparkfun spi wifi
*/
/**
* @library rf22
* @sensor rf22
* @comname RF22 Transceiver
* @altname RFM22B
* @type wifi
* @man sparkfun
* @web https://www.sparkfun.com/products/12030
* @con spi
*
* @brief API for the RF22 Transceiver Module
*
* This base class provides basic functions for sending and receiving unaddressable,
* unreliable datagrams of arbitrary length to 255 octets per packet.
*
* Subclasses may use this class to implement reliable, addressed datagrams and streams,
* mesh routers, repeaters, translators etc.
*
* On transmission, the TO and FROM addresses default to 0x00, unless changed by a subclass.
* On reception the TO addressed is checked against the node address (defaults to 0x00) or the
* broadcast address (which is 0xff). The ID and FLAGS are set to 0, and not checked by this class.
* This permits use of the this base RF22 class as an unaddressable, unreliable datagram service.
* Subclasses are expected to change this behavior to add node address, ids, retransmission etc.
*
* Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
* modulation scheme.
*
* @image html rf22.jpg
* <br><em>RF22 Sensor image provided by SparkFun* under
* <a href=https://creativecommons.org/licenses/by-nc-sa/3.0/>
* CC BY-NC-SA-3.0</a>.</em>
*
* @snippet rf22-server.cxx Interesting
* @snippet rf22-client.cxx Interesting
*/
class RF22
{
public:
/**
* @brief Defines register values for a set of modem configuration registers
*
* Defines register values for a set of modem configuration registers
* that can be passed to setModemConfig()
* if none of the choices in ModemConfigChoice suit your need
* setModemConfig() writes the register values to the appropriate RF22 registers
* to set the desired modulation type, data rate and deviation/bandwidth.
* Suitable values for these registers can be computed using the register calculator at
* http://www.hoperf.com/upload/rf/RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
*/
typedef struct
{
uint8_t reg_1c; ///< Value for register RF22_REG_1C_IF_FILTER_BANDWIDTH
uint8_t reg_1f; ///< Value for register RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE
uint8_t reg_20; ///< Value for register RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE
uint8_t reg_21; ///< Value for register RF22_REG_21_CLOCK_RECOVERY_OFFSET2
uint8_t reg_22; ///< Value for register RF22_REG_22_CLOCK_RECOVERY_OFFSET1
uint8_t reg_23; ///< Value for register RF22_REG_23_CLOCK_RECOVERY_OFFSET0
uint8_t reg_24; ///< Value for register RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1
uint8_t reg_25; ///< Value for register RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0
uint8_t reg_2c; ///< Value for register RF22_REG_2C_OOK_COUNTER_VALUE_1
uint8_t reg_2d; ///< Value for register RF22_REG_2D_OOK_COUNTER_VALUE_2
uint8_t reg_2e; ///< Value for register RF22_REG_2E_SLICER_PEAK_HOLD
uint8_t reg_58; ///< Value for register RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING
uint8_t reg_69; ///< Value for register RF22_REG_69_AGC_OVERRIDE1
uint8_t reg_6e; ///< Value for register RF22_REG_6E_TX_DATA_RATE1
uint8_t reg_6f; ///< Value for register RF22_REG_6F_TX_DATA_RATE0
uint8_t reg_70; ///< Value for register RF22_REG_70_MODULATION_CONTROL1
uint8_t reg_71; ///< Value for register RF22_REG_71_MODULATION_CONTROL2
uint8_t reg_72; ///< Value for register RF22_REG_72_FREQUENCY_DEVIATION
} ModemConfig;
/**
* Choices for setModemConfig() for a selected subset of common modulation types,
* and data rates. If you need another configuration, use the register calculator.
* and call setModemRegisters() with your desired settings
* These are indexes into _modemConfig
*/
typedef enum
{
UnmodulatedCarrier = 0, ///< Unmodulated carrier for testing
FSK_PN9_Rb2Fd5, ///< FSK, No Manchester, Rb = 2kbs, Fd = 5kHz, PN9 random modulation for testing
FSK_Rb2Fd5, ///< FSK, No Manchester, Rb = 2kbs, Fd = 5kHz
FSK_Rb2_4Fd36, ///< FSK, No Manchester, Rb = 2.4kbs, Fd = 36kHz
FSK_Rb4_8Fd45, ///< FSK, No Manchester, Rb = 4.8kbs, Fd = 45kHz
FSK_Rb9_6Fd45, ///< FSK, No Manchester, Rb = 9.6kbs, Fd = 45kHz
FSK_Rb19_2Fd9_6, ///< FSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
FSK_Rb38_4Fd19_6, ///< FSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
FSK_Rb57_6Fd28_8, ///< FSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
FSK_Rb125Fd125, ///< FSK, No Manchester, Rb = 125kbs, Fd = 125kHz
GFSK_Rb2Fd5, ///< GFSK, No Manchester, Rb = 2kbs, Fd = 5kHz
GFSK_Rb2_4Fd36, ///< GFSK, No Manchester, Rb = 2.4kbs, Fd = 36kHz
GFSK_Rb4_8Fd45, ///< GFSK, No Manchester, Rb = 4.8kbs, Fd = 45kHz
GFSK_Rb9_6Fd45, ///< GFSK, No Manchester, Rb = 9.6kbs, Fd = 45kHz
GFSK_Rb19_2Fd9_6, ///< GFSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
GFSK_Rb38_4Fd19_6, ///< GFSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
GFSK_Rb57_6Fd28_8, ///< GFSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
GFSK_Rb125Fd125, ///< GFSK, No Manchester, Rb = 125kbs, Fd = 125kHz
OOK_Rb1_2Bw75, ///< OOK, No Manchester, Rb = 1.2kbs, Rx Bandwidth = 75kHz
OOK_Rb2_4Bw335, ///< OOK, No Manchester, Rb = 2.4kbs, Rx Bandwidth = 335kHz
OOK_Rb4_8Bw335, ///< OOK, No Manchester, Rb = 4.8kbs, Rx Bandwidth = 335kHz
OOK_Rb9_6Bw335, ///< OOK, No Manchester, Rb = 9.6kbs, Rx Bandwidth = 335kHz
OOK_Rb19_2Bw335, ///< OOK, No Manchester, Rb = 19.2kbs, Rx Bandwidth = 335kHz
OOK_Rb38_4Bw335, ///< OOK, No Manchester, Rb = 38.4kbs, Rx Bandwidth = 335kHz
OOK_Rb40Bw335 ///< OOK, No Manchester, Rb = 40kbs, Rx Bandwidth = 335kHz
} ModemConfigChoice;
/**
* Constructor. You can have multiple instances, but each instance must have its own
* interrupt and slave select pin. After constructing, you must call init() to initialize the interface
* and the radio module
* @param[in] spiBus Pointer to the SPI interface object to use. Default 0 or the standard Arduino hardware
* SPI interface
* @param[in] slaveSelectPin the Arduino pin number of the output to use to select the RF22 before
* accessing it. Default is 10 or the normal SS pin for Arduino
* @param[in] interruptPin The interrupt pin number to use. Default is 2
*/
RF22(uint8_t spiBus = 0, uint8_t slaveSelectPin = 10, uint8_t interruptPin = 2);
/**
* Destructor.
*/
virtual ~RF22();
/**
* Initializes this instance and the radio module connected to it.
* The following steps are taken:
* - Software reset the RF22 module
* - Checks the connected RF22 module is either a RF22_DEVICE_TYPE_RX_TRX or a RF22_DEVICE_TYPE_TX
* - Configures the RF22 module
* - Sets the frequency to 434.0 MHz
* - Sets the modem data rate to FSK_Rb2_4Fd36
* @return true if everything was successful
*/
uint8_t init();
/**
* Issues a software reset to the
* RF22 module. Blocks for 1ms to ensure the reset is complete.
*/
void reset();
/**
* Reads a single register from the RF22
* @param[in] reg Register number, one of RF22_REG_*
* @return The value of the register
*/
uint8_t spiRead(uint8_t reg);
/**
* Writes a single byte to the RF22
* @param[in] reg Register number, one of RF22_REG_*
* @param[in] val The value to write
*/
void spiWrite(uint8_t reg, uint8_t val);
/**
* Reads a number of consecutive registers from the RF22 using burst read mode
* @param[in] reg Register number of the first register, one of RF22_REG_*
* @param[in] dest Array to write the register values to. Must be at least len bytes
* @param[in] len Number of bytes to read
*/
void spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len);
/**
* Write a number of consecutive registers using burst write mode
* @param[in] reg Register number of the first register, one of RF22_REG_*
* @param[in] src Array of new register values to write. Must be at least len bytes
* @param[in] len Number of bytes to write
*/
void spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len);
/**
* Reads and returns the device status register RF22_REG_02_DEVICE_STATUS
* @return The value of the device status register
*/
uint8_t statusRead();
/**
* Reads a value from the on-chip analog-digital converter
* @param[in] adcsel Selects the ADC input to measure. One of RF22_ADCSEL_*. Defaults to the
* internal temperature sensor
* @param[in] adcref Specifies the reference voltage to use. One of RF22_ADCREF_*.
* Defaults to the internal bandgap voltage.
* @param[in] adcgain Amplifier gain selection.
* @param[in] adcoffs Amplifier offset (0 to 15).
* @return The analog value. 0 to 255.
*/
uint8_t adcRead(uint8_t adcsel = RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR,
uint8_t adcref = RF22_ADCREF_BANDGAP_VOLTAGE,
uint8_t adcgain = 0,
uint8_t adcoffs = 0);
/**
* Reads the on-chip temperature sensor
* @param[in] tsrange Specifies the temperature range to use. One of RF22_TSRANGE_*
* @param[in] tvoffs Specifies the temperature value offset. This is actually signed value
* added to the measured temperature value
* @return The measured temperature.
*/
uint8_t temperatureRead(uint8_t tsrange = RF22_TSRANGE_M64_64C, uint8_t tvoffs = 0);
/**
* Reads the wakeup timer value in registers RF22_REG_17_WAKEUP_TIMER_VALUE1
* and RF22_REG_18_WAKEUP_TIMER_VALUE2
* @return The wakeup timer value
*/
uint16_t wutRead();
/**
* Sets the wakeup timer period registers RF22_REG_14_WAKEUP_TIMER_PERIOD1,
* RF22_REG_15_WAKEUP_TIMER_PERIOD2 and RF22_R<EG_16_WAKEUP_TIMER_PERIOD3
* @param[in] wtm Wakeup timer mantissa value
* @param[in] wtr Wakeup timer exponent R value
* @param[in] wtd Wakeup timer exponent D value
*/
void setWutPeriod(uint16_t wtm, uint8_t wtr = 0, uint8_t wtd = 0);
/**
* Sets the transmitter and receiver center frequency
* @param[in] center Frequency in MHz. 240.0 to 960.0. Caution, some versions of RF22 and derivatives
* implemented more restricted frequency ranges.
* @param[in] afcPullInRange Sets the AF Pull In Range in MHz. Defaults to 0.05MHz (50kHz). Range is 0.0 to 0.159375
* for frequencies 240.0 to 480MHz, and 0.0 to 0.318750MHz for frequencies 480.0 to 960MHz,
* @return true if the selected frequency center + (fhch * fhs) is within range and the afcPullInRange is within range
*/
uint8_t setFrequency(float center, float afcPullInRange = 0.05);
/**
* Sets the frequency hopping step size.
* @param[in] fhs Frequency Hopping step size in 10kHz increments
* @return true if center + (fhch * fhs) is within limits
*/
uint8_t setFHStepSize(uint8_t fhs);
/**
* Sets the frequency hopping channel. Adds fhch * fhs to center frequency
* @param[in] fhch The channel number
* @return true if the selected frequency center + (fhch * fhs) is within range
*/
uint8_t setFHChannel(uint8_t fhch);
/**
* Reads and returns the current RSSI value from register RF22_REG_26_RSSI. If you want to find the RSSI
* of the last received message, use lastRssi() instead.
* @return The current RSSI value
*/
uint8_t rssiRead();
/**
* Reads and returns the current EZMAC value from register RF22_REG_31_EZMAC_STATUS
* @return The current EZMAC value
*/
uint8_t ezmacStatusRead();
/**
* Sets the parameters for the RF22 Idle mode in register RF22_REG_07_OPERATING_MODE.
* Idle mode is the mode the RF22 will be in when not transmitting or receiving. The default idle mode
* is RF22_XTON i.e. READY mode.
* @param[in] mode Mask of mode bits, using RF22_SWRES, RF22_ENLBD, RF22_ENWT,
* RF22_X32KSEL, RF22_PLLON, RF22_XTON.
*/
void setMode(uint8_t mode);
/**
* If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
* disables them.
*/
void setModeIdle();
/**
* If current mode is Tx or Idle, changes it to Rx.
* Starts the receiver in the RF22.
*/
void setModeRx();
/**
* If current mode is Rx or Idle, changes it to Rx.
* Starts the transmitter in the RF22.
*/
void setModeTx();
/**
* Returns the operating mode of the library.
* @return the current mode, one of RF22_MODE_*
*/
uint8_t mode();
/**
* Sets the transmitter power output level in register RF22_REG_6D_TX_POWER.
* Be a good neighbor and set the lowest power level you need.
* After init(), the power will be set to RF22_TXPOW_8DBM.
* Caution: In some countries you may only select RF22_TXPOW_17DBM if you
* are also using frequency hopping.
* @param[in] power Transmitter power level, one of RF22_TXPOW_*
*/
void setTxPower(uint8_t power);
/**
* Sets all the registered required to configure the data modem in the RF22, including the data rate,
* bandwidths etc. You can use this to configure the modem with custom configurations if none of the
* canned configurations in ModemConfigChoice suit you.
* @param[in] config A ModemConfig structure containing values for the modem configuration registers.
*/
void setModemRegisters(const ModemConfig* config);
/**
* Select one of the predefined modem configurations. If you need a modem configuration not provided
* here, use setModemRegisters() with your own ModemConfig.
* @param[in] index The configuration choice.
* @return true if index is a valid choice.
*/
uint8_t setModemConfig(ModemConfigChoice index);
/**
* Starts the receiver and checks whether a received message is available.
* This can be called multiple times in a timeout loop
* @return true if a complete, valid message has been received and is able to be retrieved by
* recv()
*/
uint8_t available();
/**
* Starts the receiver and blocks until a valid received
* message is available.
*/
void waitAvailable();
/**
* Starts the receiver and blocks until a received message is available or a timeout
* @param[in] timeout Maximum time to wait in milliseconds.
* @return true if a message is available
*/
bool waitAvailableTimeout(unsigned long timeout);
/**
* Turns the receiver on if it not already on.
* If there is a valid message available, copy it to buf and return true
* else return false.
* If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
* You should be sure to call this function frequently enough to not miss any messages
* It is recommended that you call it in your main loop.
* @param[in] buf Location to copy the received message
* @param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
* @return true if a valid message was copied to buf
*/
uint8_t recv(uint8_t* buf, uint8_t* len);
/**
* Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
* Then loads a message into the transmitter and starts the transmitter. Note that a message length
* of 0 is NOT permitted.
* @param[in] data Array of data to be sent
* @param[in] len Number of bytes of data to send (> 0)
* @return true if the message length was valid and it was correctly queued for transmit
*/
uint8_t send(const uint8_t* data, uint8_t len);
/**
* Blocks until the RF22 is not in mode RF22_MODE_TX (i.e. until the RF22 is not transmitting).
* This effectively waits until any previous transmit packet is finished being transmitted.
*/
void waitPacketSent();
/**
* Tells the receiver to accept messages with any TO address, not just messages
* addressed to this node or the broadcast address
* @param[in] promiscuous true if you wish to receive messages with any TO address
*/
void setPromiscuous(uint8_t promiscuous);
/**
* Returns the TO header of the last received message
* @return The TO header
*/
uint8_t headerTo();
/**
* Returns the FROM header of the last received message
* @return The FROM header
*/
uint8_t headerFrom();
/**
* Returns the ID header of the last received message
* @return The ID header
*/
uint8_t headerId();
/**
* Returns the FLAGS header of the last received message
* @return The FLAGS header
*/
uint8_t headerFlags();
/**
* Returns the RSSI (Receiver Signal Strength Indicator)
* of the last received message. This measurement is taken when
* the preamble has been received. It is a (non-linear) measure of the received signal strength.
* @return The RSSI
*/
uint8_t lastRssi();
/**
* Prints a data buffer in HEX.
* For diagnostic use
* @param[in] prompt string to preface the print
* @param[in] buf Location of the buffer to print
* @param[in] len Length of the buffer in octets.
*/
static void printBuffer(const char* prompt, const uint8_t* buf, uint8_t len);
/**
* Sets the length of the preamble
* in 4-bit nibbles.
* Caution: this should be set to the same
* value on all nodes in your network. Default is 8.
* Sets the message preamble length in RF22_REG_34_PREAMBLE_LENGTH
* @param[in] nibbles Preamble length in nibbles of 4 bits each.
*/
void setPreambleLength(uint8_t nibbles);
/**
* Sets the sync words for transmit and receive in registers RF22_REG_36_SYNC_WORD3
* to RF22_REG_39_SYNC_WORD0
* Caution: this should be set to the same
* value on all nodes in your network. Default is { 0x2d, 0xd4 }
* @param[in] syncWords Array of sync words
* @param[in] len Number of sync words to set
*/
void setSyncWords(const uint8_t* syncWords, uint8_t len);
protected:
/**
* This is a low level function to handle the interrupts for one instance of RF22.
* Called automatically when interrupt pin goes low, should not need to be called by user.
*/
void handleInterrupt();
/**
* Clears the receiver buffer.
* Internal use only
*/
void clearRxBuf();
/**
* Clears the transmitter buffer
* Internal use only
*/
void clearTxBuf();
/**
* Fills the transmitter buffer with the data of a message to be sent
* @param[in] data Array of data bytes to be sent (1 to 255)
* @param[in] len Number of data bytes in data (> 0)
* @return true if the message length is valid
*/
uint8_t fillTxBuf(const uint8_t* data, uint8_t len);
/**
* Appends the transmitter buffer with the data of a message to be sent
* @param[in] data Array of data bytes to be sent (0 to 255)
* @param[in] len Number of data bytes in data
* @return false if the resulting message would exceed RF22_MAX_MESSAGE_LEN, else true
*/
uint8_t appendTxBuf(const uint8_t* data, uint8_t len);
/**
* Internal function to load the next fragment of
* the current message into the transmitter FIFO
* Internal use only
*/
void sendNextFragment();
/**
* Function to copy the next fragment from
* the receiver FIFO into the receiver buffer
*/
void readNextFragment();
/**
* Clears the RF22 Rx and Tx FIFOs
* Internal use only
*/
void resetFifos();
/**
* Clears the RF22 Rx FIFO
* Internal use only
*/
void resetRxFifo();
/**
* Clears the RF22 Tx FIFO
* Internal use only
*/
void resetTxFifo();
/**
* This function will be called by handleInterrupt() if an RF22 external interrupt occurs.
* This can only happen if external interrupts are enabled in the RF22
* (which they are not by default).
* Subclasses may override this function to get control when an RF22 external interrupt occurs.
*/
virtual void handleExternalInterrupt();
/**
* This function will be called by handleInterrupt() if an RF22 wakeup timer interrupt occurs.
* This can only happen if wakeup timer interrupts are enabled in the RF22
* (which they are not by default).
* Subclasses may override this function to get control when an RF22 wakeup timer interrupt occurs.
*/
virtual void handleWakeupTimerInterrupt();
/**
* Sets the TO header to be sent in all subsequent messages
* @param[in] to The new TO header value
*/
void setHeaderTo(uint8_t to);
/**
* Sets the FROM header to be sent in all subsequent messages
* @param[in] from The new FROM header value
*/
void setHeaderFrom(uint8_t from);
/**
* Sets the ID header to be sent in all subsequent messages
* @param[in] id The new ID header value
*/
void setHeaderId(uint8_t id);
/**
* Sets the FLAGS header to be sent in all subsequent messages
* @param[in] flags The new FLAGS header value
*/
void setHeaderFlags(uint8_t flags);
/**
* Start the transmission of the contents
* of the Tx buffer
*/
void startTransmit();
/**
* ReStart the transmission of the contents
* of the Tx buffer after a transmission failure
*/
void restartTransmit();
uint64_t getTimestamp ();
private:
/**
* Static interrupt handler wrapper
*/
static void isr(void* args);
mraa_spi_context _spi;
mraa_gpio_context _cs;
mraa_gpio_context _irq;
volatile uint8_t _mode; // One of RF22_MODE_*
uint8_t _idleMode;
uint8_t _deviceType;
// These volatile members may get changed in the interrupt service routine
volatile uint8_t _bufLen;
uint8_t _buf[RF22_MAX_MESSAGE_LEN];
volatile uint8_t _rxBufValid;
volatile uint8_t _txBufSentIndex;
volatile uint16_t _rxBad;
volatile uint16_t _rxGood;
volatile uint16_t _txGood;
volatile uint8_t _lastRssi;
};
}